mirror of
https://gitee.com/bianbu-linux/linux-6.6
synced 2025-04-24 14:07:52 -04:00
Currently, there is a mess with the prototypes of the non-atomic bitops across the different architectures: ret bool, int, unsigned long nr int, long, unsigned int, unsigned long addr volatile unsigned long *, volatile void * Thankfully, it doesn't provoke any bugs, but can sometimes make the compiler angry when it's not handy at all. Adjust all the prototypes to the following standard: ret bool retval can be only 0 or 1 nr unsigned long native; signed makes no sense addr volatile unsigned long * bitmaps are arrays of ulongs Next, some architectures don't define 'arch_' versions as they don't support instrumentation, others do. To make sure there is always the same set of callables present and to ease any potential future changes, make them all follow the rule: * architecture-specific files define only 'arch_' versions; * non-prefixed versions can be defined only in asm-generic files; and place the non-prefixed definitions into a new file in asm-generic to be included by non-instrumented architectures. Finally, add some static assertions in order to prevent people from making a mess in this room again. I also used the %__always_inline attribute consistently, so that they always get resolved to the actual operations. Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Yury Norov <yury.norov@gmail.com>
456 lines
11 KiB
C
456 lines
11 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_IA64_BITOPS_H
|
|
#define _ASM_IA64_BITOPS_H
|
|
|
|
/*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
|
|
* O(1) scheduler patch
|
|
*/
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error only <linux/bitops.h> can be included directly
|
|
#endif
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/types.h>
|
|
#include <asm/intrinsics.h>
|
|
#include <asm/barrier.h>
|
|
|
|
/**
|
|
* set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*
|
|
* The address must be (at least) "long" aligned.
|
|
* Note that there are driver (e.g., eepro100) which use these operations to
|
|
* operate on hw-defined data-structures, so we can't easily change these
|
|
* operations to force a bigger alignment.
|
|
*
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
static __inline__ void
|
|
set_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 bit, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
bit = 1 << (nr & 31);
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old | bit;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
}
|
|
|
|
/**
|
|
* arch___set_bit - Set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __always_inline void
|
|
arch___set_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
|
|
}
|
|
|
|
/**
|
|
* clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static __inline__ void
|
|
clear_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 mask, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
mask = ~(1 << (nr & 31));
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old & mask;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
}
|
|
|
|
/**
|
|
* clear_bit_unlock - Clears a bit in memory with release
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit_unlock() is atomic and may not be reordered. It does
|
|
* contain a memory barrier suitable for unlock type operations.
|
|
*/
|
|
static __inline__ void
|
|
clear_bit_unlock (int nr, volatile void *addr)
|
|
{
|
|
__u32 mask, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
mask = ~(1 << (nr & 31));
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old & mask;
|
|
} while (cmpxchg_rel(m, old, new) != old);
|
|
}
|
|
|
|
/**
|
|
* __clear_bit_unlock - Non-atomically clears a bit in memory with release
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* Similarly to clear_bit_unlock, the implementation uses a store
|
|
* with release semantics. See also arch_spin_unlock().
|
|
*/
|
|
static __inline__ void
|
|
__clear_bit_unlock(int nr, void *addr)
|
|
{
|
|
__u32 * const m = (__u32 *) addr + (nr >> 5);
|
|
__u32 const new = *m & ~(1 << (nr & 31));
|
|
|
|
ia64_st4_rel_nta(m, new);
|
|
}
|
|
|
|
/**
|
|
* arch___clear_bit - Clears a bit in memory (non-atomic version)
|
|
* @nr: the bit to clear
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike clear_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __always_inline void
|
|
arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
|
|
}
|
|
|
|
/**
|
|
* change_bit - Toggle a bit in memory
|
|
* @nr: Bit to toggle
|
|
* @addr: Address to start counting from
|
|
*
|
|
* change_bit() is atomic and may not be reordered.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void
|
|
change_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 bit, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
bit = (1 << (nr & 31));
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old ^ bit;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
}
|
|
|
|
/**
|
|
* arch___change_bit - Toggle a bit in memory
|
|
* @nr: the bit to toggle
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __always_inline void
|
|
arch___change_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies the acquisition side of the memory barrier.
|
|
*/
|
|
static __inline__ int
|
|
test_and_set_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 bit, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
bit = 1 << (nr & 31);
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old | bit;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
return (old & bit) != 0;
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit_lock - Set a bit and return its old value for lock
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This is the same as test_and_set_bit on ia64
|
|
*/
|
|
#define test_and_set_bit_lock test_and_set_bit
|
|
|
|
/**
|
|
* arch___test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __always_inline bool
|
|
arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
__u32 *p = (__u32 *) addr + (nr >> 5);
|
|
__u32 m = 1 << (nr & 31);
|
|
int oldbitset = (*p & m) != 0;
|
|
|
|
*p |= m;
|
|
return oldbitset;
|
|
}
|
|
|
|
/**
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies the acquisition side of the memory barrier.
|
|
*/
|
|
static __inline__ int
|
|
test_and_clear_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 mask, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
mask = ~(1 << (nr & 31));
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old & mask;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
return (old & ~mask) != 0;
|
|
}
|
|
|
|
/**
|
|
* arch___test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __always_inline bool
|
|
arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
__u32 *p = (__u32 *) addr + (nr >> 5);
|
|
__u32 m = 1 << (nr & 31);
|
|
int oldbitset = (*p & m) != 0;
|
|
|
|
*p &= ~m;
|
|
return oldbitset;
|
|
}
|
|
|
|
/**
|
|
* test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies the acquisition side of the memory barrier.
|
|
*/
|
|
static __inline__ int
|
|
test_and_change_bit (int nr, volatile void *addr)
|
|
{
|
|
__u32 bit, old, new;
|
|
volatile __u32 *m;
|
|
CMPXCHG_BUGCHECK_DECL
|
|
|
|
m = (volatile __u32 *) addr + (nr >> 5);
|
|
bit = (1 << (nr & 31));
|
|
do {
|
|
CMPXCHG_BUGCHECK(m);
|
|
old = *m;
|
|
new = old ^ bit;
|
|
} while (cmpxchg_acq(m, old, new) != old);
|
|
return (old & bit) != 0;
|
|
}
|
|
|
|
/**
|
|
* arch___test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
*/
|
|
static __always_inline bool
|
|
arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
|
|
{
|
|
__u32 old, bit = (1 << (nr & 31));
|
|
__u32 *m = (__u32 *) addr + (nr >> 5);
|
|
|
|
old = *m;
|
|
*m = old ^ bit;
|
|
return (old & bit) != 0;
|
|
}
|
|
|
|
static __always_inline bool
|
|
arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
|
|
{
|
|
return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
|
|
}
|
|
|
|
/**
|
|
* ffz - find the first zero bit in a long word
|
|
* @x: The long word to find the bit in
|
|
*
|
|
* Returns the bit-number (0..63) of the first (least significant) zero bit.
|
|
* Undefined if no zero exists, so code should check against ~0UL first...
|
|
*/
|
|
static inline unsigned long
|
|
ffz (unsigned long x)
|
|
{
|
|
unsigned long result;
|
|
|
|
result = ia64_popcnt(x & (~x - 1));
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first bit in word.
|
|
* @x: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static __inline__ unsigned long
|
|
__ffs (unsigned long x)
|
|
{
|
|
unsigned long result;
|
|
|
|
result = ia64_popcnt((x-1) & ~x);
|
|
return result;
|
|
}
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* Return bit number of last (most-significant) bit set. Undefined
|
|
* for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
|
|
*/
|
|
static inline unsigned long
|
|
ia64_fls (unsigned long x)
|
|
{
|
|
long double d = x;
|
|
long exp;
|
|
|
|
exp = ia64_getf_exp(d);
|
|
return exp - 0xffff;
|
|
}
|
|
|
|
/*
|
|
* Find the last (most significant) bit set. Returns 0 for x==0 and
|
|
* bits are numbered from 1..32 (e.g., fls(9) == 4).
|
|
*/
|
|
static inline int fls(unsigned int t)
|
|
{
|
|
unsigned long x = t & 0xffffffffu;
|
|
|
|
if (!x)
|
|
return 0;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
return ia64_popcnt(x);
|
|
}
|
|
|
|
/*
|
|
* Find the last (most significant) bit set. Undefined for x==0.
|
|
* Bits are numbered from 0..63 (e.g., __fls(9) == 3).
|
|
*/
|
|
static inline unsigned long
|
|
__fls (unsigned long x)
|
|
{
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
x |= x >> 32;
|
|
return ia64_popcnt(x) - 1;
|
|
}
|
|
|
|
#include <asm-generic/bitops/fls64.h>
|
|
|
|
#include <asm-generic/bitops/builtin-ffs.h>
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
static __inline__ unsigned long __arch_hweight64(unsigned long x)
|
|
{
|
|
unsigned long result;
|
|
result = ia64_popcnt(x);
|
|
return result;
|
|
}
|
|
|
|
#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
|
|
#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
|
|
#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
|
|
|
|
#include <asm-generic/bitops/const_hweight.h>
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <asm-generic/bitops/non-instrumented-non-atomic.h>
|
|
|
|
#include <asm-generic/bitops/le.h>
|
|
|
|
#include <asm-generic/bitops/ext2-atomic-setbit.h>
|
|
|
|
#include <asm-generic/bitops/sched.h>
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _ASM_IA64_BITOPS_H */
|