bianbu-linux-6.6/include/linux/sched/task.h
Linus Torvalds 9ba27414f2 fork-v5.9
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXyge/QAKCRCRxhvAZXjc
 oildAQCCWpnTeXm6hrIE3VZ36X5npFtbaEthdBVAUJM7mo0FYwEA8+Wbnubg6jCw
 mztkXCnTfU7tApUdhKtQzcpEws45/Qk=
 =REE/
 -----END PGP SIGNATURE-----

Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull fork cleanups from Christian Brauner:
 "This is cleanup series from when we reworked a chunk of the process
  creation paths in the kernel and switched to struct
  {kernel_}clone_args.

  High-level this does two main things:

   - Remove the double export of both do_fork() and _do_fork() where
     do_fork() used the incosistent legacy clone calling convention.

     Now we only export _do_fork() which is based on struct
     kernel_clone_args.

   - Remove the copy_thread_tls()/copy_thread() split making the
     architecture specific HAVE_COYP_THREAD_TLS config option obsolete.

  This switches all remaining architectures to select
  HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
  convention. The current split makes the process creation codepaths
  more convoluted than they need to be. Each architecture has their own
  copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
  has a copy_thread_tls() function.

  The split is not needed anymore nowadays, all architectures support
  CLONE_SETTLS but quite a few of them never bothered to select
  HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
  and use the old calling convention. Removing this split cleans up the
  process creation codepaths and paves the way for implementing clone3()
  on such architectures since it requires the copy_thread_tls() calling
  convention.

  After having made each architectures support copy_thread_tls() this
  series simply renames that function back to copy_thread(). It also
  switches all architectures that call do_fork() directly over to
  _do_fork() and the struct kernel_clone_args calling convention. This
  is a corollary of switching the architectures that did not yet support
  it over to copy_thread_tls() since do_fork() is conditional on not
  supporting copy_thread_tls() (Mostly because it lacks a separate
  argument for tls which is trivial to fix but there's no need for this
  function to exist.).

  The do_fork() removal is in itself already useful as it allows to to
  remove the export of both do_fork() and _do_fork() we currently have
  in favor of only _do_fork(). This has already been discussed back when
  we added clone3(). The legacy clone() calling convention is - as is
  probably well-known - somewhat odd:

    #
    # ABI hall of shame
    #
    config CLONE_BACKWARDS
    config CLONE_BACKWARDS2
    config CLONE_BACKWARDS3

  that is aggravated by the fact that some architectures such as sparc
  follow the CLONE_BACKWARDSx calling convention but don't really select
  the corresponding config option since they call do_fork() directly.

  So do_fork() enforces a somewhat arbitrary calling convention in the
  first place that doesn't really help the individual architectures that
  deviate from it. They can thus simply be switched to _do_fork()
  enforcing a single calling convention. (I really hope that any new
  architectures will __not__ try to implement their own calling
  conventions...)

  Most architectures already have made a similar switch (m68k comes to
  mind).

  Overall this removes more code than it adds even with a good portion
  of added comments. It simplifies a chunk of arch specific assembly
  either by moving the code into C or by simply rewriting the assembly.

  Architectures that have been touched in non-trivial ways have all been
  actually boot and stress tested: sparc and ia64 have been tested with
  Debian 9 images. They are the two architectures which have been
  touched the most. All non-trivial changes to architectures have seen
  acks from the relevant maintainers. nios2 with a custom built
  buildroot image. h8300 I couldn't get something bootable to test on
  but the changes have been fairly automatic and I'm sure we'll hear
  people yell if I broke something there.

  All other architectures that have been touched in trivial ways have
  been compile tested for each single patch of the series via git rebase
  -x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
  even though they have just been trivially touched (removal of the
  HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
  basically "core architectures" and since it is trivial to get your
  hands on a useable image"

* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  arch: rename copy_thread_tls() back to copy_thread()
  arch: remove HAVE_COPY_THREAD_TLS
  unicore: switch to copy_thread_tls()
  sh: switch to copy_thread_tls()
  nds32: switch to copy_thread_tls()
  microblaze: switch to copy_thread_tls()
  hexagon: switch to copy_thread_tls()
  c6x: switch to copy_thread_tls()
  alpha: switch to copy_thread_tls()
  fork: remove do_fork()
  h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  sparc: unconditionally enable HAVE_COPY_THREAD_TLS
  sparc: share process creation helpers between sparc and sparc64
  sparc64: enable HAVE_COPY_THREAD_TLS
  fork: fold legacy_clone_args_valid() into _do_fork()
2020-08-04 14:47:45 -07:00

175 lines
4.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_TASK_H
#define _LINUX_SCHED_TASK_H
/*
* Interface between the scheduler and various task lifetime (fork()/exit())
* functionality:
*/
#include <linux/sched.h>
#include <linux/uaccess.h>
struct task_struct;
struct rusage;
union thread_union;
struct css_set;
/* All the bits taken by the old clone syscall. */
#define CLONE_LEGACY_FLAGS 0xffffffffULL
struct kernel_clone_args {
u64 flags;
int __user *pidfd;
int __user *child_tid;
int __user *parent_tid;
int exit_signal;
unsigned long stack;
unsigned long stack_size;
unsigned long tls;
pid_t *set_tid;
/* Number of elements in *set_tid */
size_t set_tid_size;
int cgroup;
struct cgroup *cgrp;
struct css_set *cset;
};
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;
extern union thread_union init_thread_union;
extern struct task_struct init_task;
#ifdef CONFIG_PROVE_RCU
extern int lockdep_tasklist_lock_is_held(void);
#endif /* #ifdef CONFIG_PROVE_RCU */
extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu);
extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
extern void sched_post_fork(struct task_struct *p);
extern void sched_dead(struct task_struct *p);
void __noreturn do_task_dead(void);
extern void proc_caches_init(void);
extern void fork_init(void);
extern void release_task(struct task_struct * p);
extern int copy_thread(unsigned long, unsigned long, unsigned long,
struct task_struct *, unsigned long);
extern void flush_thread(void);
#ifdef CONFIG_HAVE_EXIT_THREAD
extern void exit_thread(struct task_struct *tsk);
#else
static inline void exit_thread(struct task_struct *tsk)
{
}
#endif
extern void do_group_exit(int);
extern void exit_files(struct task_struct *);
extern void exit_itimers(struct signal_struct *);
extern long _do_fork(struct kernel_clone_args *kargs);
struct task_struct *fork_idle(int);
struct mm_struct *copy_init_mm(void);
extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
extern long kernel_wait4(pid_t, int __user *, int, struct rusage *);
extern void free_task(struct task_struct *tsk);
/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec() {}
#endif
static inline struct task_struct *get_task_struct(struct task_struct *t)
{
refcount_inc(&t->usage);
return t;
}
extern void __put_task_struct(struct task_struct *t);
static inline void put_task_struct(struct task_struct *t)
{
if (refcount_dec_and_test(&t->usage))
__put_task_struct(t);
}
static inline void put_task_struct_many(struct task_struct *t, int nr)
{
if (refcount_sub_and_test(nr, &t->usage))
__put_task_struct(t);
}
void put_task_struct_rcu_user(struct task_struct *task);
#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
extern int arch_task_struct_size __read_mostly;
#else
# define arch_task_struct_size (sizeof(struct task_struct))
#endif
#ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST
/*
* If an architecture has not declared a thread_struct whitelist we
* must assume something there may need to be copied to userspace.
*/
static inline void arch_thread_struct_whitelist(unsigned long *offset,
unsigned long *size)
{
*offset = 0;
/* Handle dynamically sized thread_struct. */
*size = arch_task_struct_size - offsetof(struct task_struct, thread);
}
#endif
#ifdef CONFIG_VMAP_STACK
static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
{
return t->stack_vm_area;
}
#else
static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
{
return NULL;
}
#endif
/*
* Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
* subscriptions and synchronises with wait4(). Also used in procfs. Also
* pins the final release of task.io_context. Also protects ->cpuset and
* ->cgroup.subsys[]. And ->vfork_done.
*
* Nests both inside and outside of read_lock(&tasklist_lock).
* It must not be nested with write_lock_irq(&tasklist_lock),
* neither inside nor outside.
*/
static inline void task_lock(struct task_struct *p)
{
spin_lock(&p->alloc_lock);
}
static inline void task_unlock(struct task_struct *p)
{
spin_unlock(&p->alloc_lock);
}
#endif /* _LINUX_SCHED_TASK_H */