bianbu-linux-6.6/tools/testing/selftests/kvm/lib/x86.c
Peter Xu aee41be593 kvm: selftest: pass in extra memory when create vm
This information can be used to decide the size of the default memory
slot, which will need to cover the extra pages with page tables.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-22 16:48:38 +02:00

888 lines
24 KiB
C

/*
* tools/testing/selftests/kvm/lib/x86.c
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include "test_util.h"
#include "kvm_util.h"
#include "kvm_util_internal.h"
#include "x86.h"
/* Minimum physical address used for virtual translation tables. */
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
/* Virtual translation table structure declarations */
struct pageMapL4Entry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageDirectoryPointerEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageDirectoryEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageTableEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t dirty:1;
uint64_t reserved_07:1;
uint64_t global:1;
uint64_t ignored_11_09:3;
uint64_t address:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
/* Register Dump
*
* Input Args:
* indent - Left margin indent amount
* regs - register
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the registers given by regs, to the FILE stream
* given by steam.
*/
void regs_dump(FILE *stream, struct kvm_regs *regs,
uint8_t indent)
{
fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
"rcx: 0x%.16llx rdx: 0x%.16llx\n",
indent, "",
regs->rax, regs->rbx, regs->rcx, regs->rdx);
fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
"rsp: 0x%.16llx rbp: 0x%.16llx\n",
indent, "",
regs->rsi, regs->rdi, regs->rsp, regs->rbp);
fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
"r10: 0x%.16llx r11: 0x%.16llx\n",
indent, "",
regs->r8, regs->r9, regs->r10, regs->r11);
fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
"r14: 0x%.16llx r15: 0x%.16llx\n",
indent, "",
regs->r12, regs->r13, regs->r14, regs->r15);
fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
indent, "",
regs->rip, regs->rflags);
}
/* Segment Dump
*
* Input Args:
* indent - Left margin indent amount
* segment - KVM segment
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the KVM segment given by segment, to the FILE stream
* given by steam.
*/
static void segment_dump(FILE *stream, struct kvm_segment *segment,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
"selector: 0x%.4x type: 0x%.2x\n",
indent, "", segment->base, segment->limit,
segment->selector, segment->type);
fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
indent, "", segment->present, segment->dpl,
segment->db, segment->s, segment->l);
fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
"unusable: 0x%.2x padding: 0x%.2x\n",
indent, "", segment->g, segment->avl,
segment->unusable, segment->padding);
}
/* dtable Dump
*
* Input Args:
* indent - Left margin indent amount
* dtable - KVM dtable
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the KVM dtable given by dtable, to the FILE stream
* given by steam.
*/
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
"padding: 0x%.4x 0x%.4x 0x%.4x\n",
indent, "", dtable->base, dtable->limit,
dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}
/* System Register Dump
*
* Input Args:
* indent - Left margin indent amount
* sregs - System registers
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the state of the system registers given by sregs, to the FILE stream
* given by steam.
*/
void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
uint8_t indent)
{
unsigned int i;
fprintf(stream, "%*scs:\n", indent, "");
segment_dump(stream, &sregs->cs, indent + 2);
fprintf(stream, "%*sds:\n", indent, "");
segment_dump(stream, &sregs->ds, indent + 2);
fprintf(stream, "%*ses:\n", indent, "");
segment_dump(stream, &sregs->es, indent + 2);
fprintf(stream, "%*sfs:\n", indent, "");
segment_dump(stream, &sregs->fs, indent + 2);
fprintf(stream, "%*sgs:\n", indent, "");
segment_dump(stream, &sregs->gs, indent + 2);
fprintf(stream, "%*sss:\n", indent, "");
segment_dump(stream, &sregs->ss, indent + 2);
fprintf(stream, "%*str:\n", indent, "");
segment_dump(stream, &sregs->tr, indent + 2);
fprintf(stream, "%*sldt:\n", indent, "");
segment_dump(stream, &sregs->ldt, indent + 2);
fprintf(stream, "%*sgdt:\n", indent, "");
dtable_dump(stream, &sregs->gdt, indent + 2);
fprintf(stream, "%*sidt:\n", indent, "");
dtable_dump(stream, &sregs->idt, indent + 2);
fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
"cr3: 0x%.16llx cr4: 0x%.16llx\n",
indent, "",
sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
"apic_base: 0x%.16llx\n",
indent, "",
sregs->cr8, sregs->efer, sregs->apic_base);
fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
fprintf(stream, "%*s%.16llx\n", indent + 2, "",
sregs->interrupt_bitmap[i]);
}
}
void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
{
int rc;
TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
/* If needed, create page map l4 table. */
if (!vm->pgd_created) {
vm_paddr_t paddr = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
vm->pgd = paddr;
vm->pgd_created = true;
}
}
/* VM Virtual Page Map
*
* Input Args:
* vm - Virtual Machine
* vaddr - VM Virtual Address
* paddr - VM Physical Address
* pgd_memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return: None
*
* Within the VM given by vm, creates a virtual translation for the page
* starting at vaddr to the page starting at paddr.
*/
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint32_t pgd_memslot)
{
uint16_t index[4];
struct pageMapL4Entry *pml4e;
TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT((vaddr % vm->page_size) == 0,
"Virtual address not on page boundary,\n"
" vaddr: 0x%lx vm->page_size: 0x%x",
vaddr, vm->page_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx",
vaddr);
TEST_ASSERT((paddr % vm->page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx vm->page_size: 0x%x",
paddr, vm->page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
index[0] = (vaddr >> 12) & 0x1ffu;
index[1] = (vaddr >> 21) & 0x1ffu;
index[2] = (vaddr >> 30) & 0x1ffu;
index[3] = (vaddr >> 39) & 0x1ffu;
/* Allocate page directory pointer table if not present. */
pml4e = addr_gpa2hva(vm, vm->pgd);
if (!pml4e[index[3]].present) {
pml4e[index[3]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pml4e[index[3]].writable = true;
pml4e[index[3]].present = true;
}
/* Allocate page directory table if not present. */
struct pageDirectoryPointerEntry *pdpe;
pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
if (!pdpe[index[2]].present) {
pdpe[index[2]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pdpe[index[2]].writable = true;
pdpe[index[2]].present = true;
}
/* Allocate page table if not present. */
struct pageDirectoryEntry *pde;
pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
if (!pde[index[1]].present) {
pde[index[1]].address = vm_phy_page_alloc(vm,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
>> vm->page_shift;
pde[index[1]].writable = true;
pde[index[1]].present = true;
}
/* Fill in page table entry. */
struct pageTableEntry *pte;
pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
pte[index[0]].address = paddr >> vm->page_shift;
pte[index[0]].writable = true;
pte[index[0]].present = 1;
}
/* Virtual Translation Tables Dump
*
* Input Args:
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps to the FILE stream given by stream, the contents of all the
* virtual translation tables for the VM given by vm.
*/
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
struct pageMapL4Entry *pml4e, *pml4e_start;
struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
struct pageDirectoryEntry *pde, *pde_start;
struct pageTableEntry *pte, *pte_start;
if (!vm->pgd_created)
return;
fprintf(stream, "%*s "
" no\n", indent, "");
fprintf(stream, "%*s index hvaddr gpaddr "
"addr w exec dirty\n",
indent, "");
pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
vm->pgd);
for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
pml4e = &pml4e_start[n1];
if (!pml4e->present)
continue;
fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
" %u\n",
indent, "",
pml4e - pml4e_start, pml4e,
addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
pml4e->writable, pml4e->execute_disable);
pdpe_start = addr_gpa2hva(vm, pml4e->address
* vm->page_size);
for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
pdpe = &pdpe_start[n2];
if (!pdpe->present)
continue;
fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
"%u %u\n",
indent, "",
pdpe - pdpe_start, pdpe,
addr_hva2gpa(vm, pdpe),
(uint64_t) pdpe->address, pdpe->writable,
pdpe->execute_disable);
pde_start = addr_gpa2hva(vm,
pdpe->address * vm->page_size);
for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
pde = &pde_start[n3];
if (!pde->present)
continue;
fprintf(stream, "%*spde 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u\n",
indent, "", pde - pde_start, pde,
addr_hva2gpa(vm, pde),
(uint64_t) pde->address, pde->writable,
pde->execute_disable);
pte_start = addr_gpa2hva(vm,
pde->address * vm->page_size);
for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
pte = &pte_start[n4];
if (!pte->present)
continue;
fprintf(stream, "%*spte 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u "
" %u 0x%-10lx\n",
indent, "",
pte - pte_start, pte,
addr_hva2gpa(vm, pte),
(uint64_t) pte->address,
pte->writable,
pte->execute_disable,
pte->dirty,
((uint64_t) n1 << 27)
| ((uint64_t) n2 << 18)
| ((uint64_t) n3 << 9)
| ((uint64_t) n4));
}
}
}
}
}
/* Set Unusable Segment
*
* Input Args: None
*
* Output Args:
* segp - Pointer to segment register
*
* Return: None
*
* Sets the segment register pointed to by segp to an unusable state.
*/
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->unusable = true;
}
static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
void *gdt = addr_gva2hva(vm, vm->gdt);
struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
desc->limit0 = segp->limit & 0xFFFF;
desc->base0 = segp->base & 0xFFFF;
desc->base1 = segp->base >> 16;
desc->s = segp->s;
desc->type = segp->type;
desc->dpl = segp->dpl;
desc->p = segp->present;
desc->limit1 = segp->limit >> 16;
desc->l = segp->l;
desc->db = segp->db;
desc->g = segp->g;
desc->base2 = segp->base >> 24;
if (!segp->s)
desc->base3 = segp->base >> 32;
}
/* Set Long Mode Flat Kernel Code Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by segp, to be a code segment
* with the selector value given by selector.
*/
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
* | kFlagCodeReadable
*/
segp->g = true;
segp->l = true;
segp->present = 1;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
/* Set Long Mode Flat Kernel Data Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by segp, to be a data segment
* with the selector value given by selector.
*/
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
* | kFlagDataWritable
*/
segp->g = true;
segp->present = true;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
/* Address Guest Virtual to Guest Physical
*
* Input Args:
* vm - Virtual Machine
* gpa - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Translates the VM virtual address given by gva to a VM physical
* address and then locates the memory region containing the VM
* physical address, within the VM given by vm. When found, the host
* virtual address providing the memory to the vm physical address is returned.
* A TEST_ASSERT failure occurs if no region containing translated
* VM virtual address exists.
*/
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint16_t index[4];
struct pageMapL4Entry *pml4e;
struct pageDirectoryPointerEntry *pdpe;
struct pageDirectoryEntry *pde;
struct pageTableEntry *pte;
void *hva;
TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
index[0] = (gva >> 12) & 0x1ffu;
index[1] = (gva >> 21) & 0x1ffu;
index[2] = (gva >> 30) & 0x1ffu;
index[3] = (gva >> 39) & 0x1ffu;
if (!vm->pgd_created)
goto unmapped_gva;
pml4e = addr_gpa2hva(vm, vm->pgd);
if (!pml4e[index[3]].present)
goto unmapped_gva;
pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
if (!pdpe[index[2]].present)
goto unmapped_gva;
pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
if (!pde[index[1]].present)
goto unmapped_gva;
pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
if (!pte[index[0]].present)
goto unmapped_gva;
return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
unmapped_gva:
TEST_ASSERT(false, "No mapping for vm virtual address, "
"gva: 0x%lx", gva);
}
static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
int pgd_memslot)
{
if (!vm->gdt)
vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
dt->base = vm->gdt;
dt->limit = getpagesize();
}
static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
int selector, int gdt_memslot,
int pgd_memslot)
{
if (!vm->tss)
vm->tss = vm_vaddr_alloc(vm, getpagesize(),
KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
memset(segp, 0, sizeof(*segp));
segp->base = vm->tss;
segp->limit = 0x67;
segp->selector = selector;
segp->type = 0xb;
segp->present = 1;
kvm_seg_fill_gdt_64bit(vm, segp);
}
void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
{
struct kvm_sregs sregs;
/* Set mode specific system register values. */
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs.idt.limit = 0;
kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
switch (vm->mode) {
case VM_MODE_FLAT48PG:
sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
sregs.cr4 |= X86_CR4_PAE;
sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
kvm_seg_set_unusable(&sregs.ldt);
kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs);
kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds);
kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es);
kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
break;
default:
TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
}
sregs.cr3 = vm->pgd;
vcpu_sregs_set(vm, vcpuid, &sregs);
}
/* Adds a vCPU with reasonable defaults (i.e., a stack)
*
* Input Args:
* vcpuid - The id of the VCPU to add to the VM.
* guest_code - The vCPU's entry point
*/
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
struct kvm_mp_state mp_state;
struct kvm_regs regs;
vm_vaddr_t stack_vaddr;
stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
/* Create VCPU */
vm_vcpu_add(vm, vcpuid, 0, 0);
/* Setup guest general purpose registers */
vcpu_regs_get(vm, vcpuid, &regs);
regs.rflags = regs.rflags | 0x2;
regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
regs.rip = (unsigned long) guest_code;
vcpu_regs_set(vm, vcpuid, &regs);
/* Setup the MP state */
mp_state.mp_state = 0;
vcpu_set_mp_state(vm, vcpuid, &mp_state);
}
/* VM VCPU CPUID Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU id
* cpuid - The CPUID values to set.
*
* Output Args: None
*
* Return: void
*
* Set the VCPU's CPUID.
*/
void vcpu_set_cpuid(struct kvm_vm *vm,
uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int rc;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
rc, errno);
}
/* Create a VM with reasonable defaults
*
* Input Args:
* vcpuid - The id of the single VCPU to add to the VM.
* extra_mem_pages - The size of extra memories to add (this will
* decide how much extra space we will need to
* setup the page tables using mem slot 0)
* guest_code - The vCPU's entry point
*
* Output Args: None
*
* Return:
* Pointer to opaque structure that describes the created VM.
*/
struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
void *guest_code)
{
struct kvm_vm *vm;
/*
* For x86 the maximum page table size for a memory region
* will be when only 4K pages are used. In that case the
* total extra size for page tables (for extra N pages) will
* be: N/512+N/512^2+N/512^3+... which is definitely smaller
* than N/512*2.
*/
uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
/* Create VM */
vm = vm_create(VM_MODE_FLAT48PG,
DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
O_RDWR);
/* Setup guest code */
kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
/* Setup IRQ Chip */
vm_create_irqchip(vm);
/* Add the first vCPU. */
vm_vcpu_add_default(vm, vcpuid, guest_code);
return vm;
}
struct kvm_x86_state {
struct kvm_vcpu_events events;
struct kvm_mp_state mp_state;
struct kvm_regs regs;
struct kvm_xsave xsave;
struct kvm_xcrs xcrs;
struct kvm_sregs sregs;
struct kvm_debugregs debugregs;
union {
struct kvm_nested_state nested;
char nested_[16384];
};
struct kvm_msrs msrs;
};
static int kvm_get_num_msrs(struct kvm_vm *vm)
{
struct kvm_msr_list nmsrs;
int r;
nmsrs.nmsrs = 0;
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
r);
return nmsrs.nmsrs;
}
struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct kvm_msr_list *list;
struct kvm_x86_state *state;
int nmsrs, r, i;
static int nested_size = -1;
if (nested_size == -1) {
nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
TEST_ASSERT(nested_size <= sizeof(state->nested_),
"Nested state size too big, %i > %zi",
nested_size, sizeof(state->nested_));
}
nmsrs = kvm_get_num_msrs(vm);
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
list->nmsrs = nmsrs;
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
r);
state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
r);
if (nested_size) {
state->nested.size = sizeof(state->nested_);
r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
r);
TEST_ASSERT(state->nested.size <= nested_size,
"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
state->nested.size, nested_size);
} else
state->nested.size = 0;
state->msrs.nmsrs = nmsrs;
for (i = 0; i < nmsrs; i++)
state->msrs.entries[i].index = list->indices[i];
r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed at %x)",
r, r == nmsrs ? -1 : list->indices[r]);
r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
r);
free(list);
return state;
}
void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int r;
if (state->nested.size) {
r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
r);
}
r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
r);
}