bianbu-linux-6.6/drivers/net/ethernet/intel/ice/ice_irq.c
Piotr Raczynski cfebc0a36e ice: track interrupt vectors with xarray
Replace custom interrupt tracker with generic xarray data structure.
Remove all code responsible for searching for a new entry with xa_alloc,
which always tries to allocate at the lowes possible index. As a result
driver is always using a contiguous region of the MSIX vector table.

New tracker keeps ice_irq_entry entries in xarray as opaque for the rest
of the driver hiding the entry details from the caller.

Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Michal Swiatkowski <michal.swiatkowski@linux.intel.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Tested-by: Pucha Himasekhar Reddy <himasekharx.reddy.pucha@intel.com> (A Contingent worker at Intel)
Signed-off-by: Piotr Raczynski <piotr.raczynski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2023-05-16 09:38:38 -07:00

299 lines
7.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2023, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
#include "ice_irq.h"
/**
* ice_init_irq_tracker - initialize interrupt tracker
* @pf: board private structure
* @max_vectors: maximum number of vectors that tracker can hold
*/
static void
ice_init_irq_tracker(struct ice_pf *pf, unsigned int max_vectors)
{
pf->irq_tracker.num_entries = max_vectors;
xa_init_flags(&pf->irq_tracker.entries, XA_FLAGS_ALLOC);
}
/**
* ice_deinit_irq_tracker - free xarray tracker
* @pf: board private structure
*/
static void ice_deinit_irq_tracker(struct ice_pf *pf)
{
xa_destroy(&pf->irq_tracker.entries);
}
/**
* ice_free_irq_res - free a block of resources
* @pf: board private structure
* @index: starting index previously returned by ice_get_res
*/
static void ice_free_irq_res(struct ice_pf *pf, u16 index)
{
struct ice_irq_entry *entry;
entry = xa_erase(&pf->irq_tracker.entries, index);
kfree(entry);
}
/**
* ice_get_irq_res - get an interrupt resource
* @pf: board private structure
*
* Allocate new irq entry in the free slot of the tracker. Since xarray
* is used, always allocate new entry at the lowest possible index. Set
* proper allocation limit for maximum tracker entries.
*
* Returns allocated irq entry or NULL on failure.
*/
static struct ice_irq_entry *ice_get_irq_res(struct ice_pf *pf)
{
struct xa_limit limit = { .max = pf->irq_tracker.num_entries,
.min = 0 };
struct ice_irq_entry *entry;
unsigned int index;
int ret;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
ret = xa_alloc(&pf->irq_tracker.entries, &index, entry, limit,
GFP_KERNEL);
if (ret) {
kfree(entry);
entry = NULL;
} else {
entry->index = index;
}
return entry;
}
/**
* ice_reduce_msix_usage - Reduce usage of MSI-X vectors
* @pf: board private structure
* @v_remain: number of remaining MSI-X vectors to be distributed
*
* Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
* pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
* remaining vectors.
*/
static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
{
int v_rdma;
if (!ice_is_rdma_ena(pf)) {
pf->num_lan_msix = v_remain;
return;
}
/* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
pf->num_rdma_msix = 0;
pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
(v_remain - v_rdma < v_rdma)) {
/* Support minimum RDMA and give remaining vectors to LAN MSIX
*/
pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
} else {
/* Split remaining MSIX with RDMA after accounting for AEQ MSIX
*/
pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
ICE_RDMA_NUM_AEQ_MSIX;
pf->num_lan_msix = v_remain - pf->num_rdma_msix;
}
}
/**
* ice_ena_msix_range - Request a range of MSIX vectors from the OS
* @pf: board private structure
*
* Compute the number of MSIX vectors wanted and request from the OS. Adjust
* device usage if there are not enough vectors. Return the number of vectors
* reserved or negative on failure.
*/
static int ice_ena_msix_range(struct ice_pf *pf)
{
int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
struct device *dev = ice_pf_to_dev(pf);
int err;
hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
num_cpus = num_online_cpus();
/* LAN miscellaneous handler */
v_other = ICE_MIN_LAN_OICR_MSIX;
/* Flow Director */
if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
v_other += ICE_FDIR_MSIX;
/* switchdev */
v_other += ICE_ESWITCH_MSIX;
v_wanted = v_other;
/* LAN traffic */
pf->num_lan_msix = num_cpus;
v_wanted += pf->num_lan_msix;
/* RDMA auxiliary driver */
if (ice_is_rdma_ena(pf)) {
pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
v_wanted += pf->num_rdma_msix;
}
if (v_wanted > hw_num_msix) {
int v_remain;
dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
v_wanted, hw_num_msix);
if (hw_num_msix < ICE_MIN_MSIX) {
err = -ERANGE;
goto exit_err;
}
v_remain = hw_num_msix - v_other;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
v_remain = ICE_MIN_LAN_TXRX_MSIX;
}
ice_reduce_msix_usage(pf, v_remain);
v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
pf->num_lan_msix);
if (ice_is_rdma_ena(pf))
dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
pf->num_rdma_msix);
}
/* actually reserve the vectors */
v_actual = pci_alloc_irq_vectors(pf->pdev, ICE_MIN_MSIX, v_wanted,
PCI_IRQ_MSIX);
if (v_actual < 0) {
dev_err(dev, "unable to reserve MSI-X vectors\n");
err = v_actual;
goto exit_err;
}
if (v_actual < v_wanted) {
dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
v_wanted, v_actual);
if (v_actual < ICE_MIN_MSIX) {
/* error if we can't get minimum vectors */
pci_free_irq_vectors(pf->pdev);
err = -ERANGE;
goto exit_err;
} else {
int v_remain = v_actual - v_other;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
v_remain = ICE_MIN_LAN_TXRX_MSIX;
ice_reduce_msix_usage(pf, v_remain);
dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
pf->num_lan_msix);
if (ice_is_rdma_ena(pf))
dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
pf->num_rdma_msix);
}
}
return v_actual;
exit_err:
pf->num_rdma_msix = 0;
pf->num_lan_msix = 0;
return err;
}
/**
* ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
* @pf: board private structure
*/
void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
pci_free_irq_vectors(pf->pdev);
ice_deinit_irq_tracker(pf);
}
/**
* ice_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
*/
int ice_init_interrupt_scheme(struct ice_pf *pf)
{
int vectors;
vectors = ice_ena_msix_range(pf);
if (vectors < 0)
return vectors;
ice_init_irq_tracker(pf, vectors);
return 0;
}
/**
* ice_alloc_irq - Allocate new interrupt vector
* @pf: board private structure
*
* Allocate new interrupt vector for a given owner id.
* return struct msi_map with interrupt details and track
* allocated interrupt appropriately.
*
* This function mimics individual interrupt allocation,
* even interrupts are actually already allocated with
* pci_alloc_irq_vectors. Individual allocation helps
* to track interrupts and simplifies interrupt related
* handling.
*
* On failure, return map with negative .index. The caller
* is expected to check returned map index.
*
*/
struct msi_map ice_alloc_irq(struct ice_pf *pf)
{
struct msi_map map = { .index = -ENOENT };
struct ice_irq_entry *entry;
entry = ice_get_irq_res(pf);
if (!entry)
return map;
map.index = entry->index;
map.virq = pci_irq_vector(pf->pdev, map.index);
return map;
}
/**
* ice_free_irq - Free interrupt vector
* @pf: board private structure
* @map: map with interrupt details
*
* Remove allocated interrupt from the interrupt tracker.
*/
void ice_free_irq(struct ice_pf *pf, struct msi_map map)
{
ice_free_irq_res(pf, map.index);
}