Add lecture

This commit is contained in:
Blizzard Finnegan 2022-01-21 12:23:29 -05:00
parent 86d6a28a12
commit a7aee74fab

View file

@ -28,6 +28,46 @@
\maketitle
\pagenumbering{arabic}
Multiple mixed quantifiers are different.
\begin{equation}
\forall x\forall y P(x,y)=\forall y\forall x P(x,y)
\end{equation}
However\dots
\begin{equation}
\forall x\exists y P(x,y) \neq \exists y\forall x P(x,y)
\end{equation}
The first says, \say{For all x, there is some y such that $x+y=0$}.
The second says, \say{For some y, all x fit the statement $x+y=0$}.
How do you negate multiple quantified statements? You follow DeMorgans, repeatedly.
\section{Inferencing}%
\label{sec:Inferencing}
\subsection{Arguments}%
\label{sub:Arguments}
All statements in an argument are premises (except the last, which is the conclusion).
The argument is valid if the conclusion is true when all premises are true.
\emph{Modus Ponens}
\begin{equation}
\begin{split}
q\to p\\
q\\
\therefore p
\end{split}
\end{equation}
\emph{Modus Tollens}
\begin{equation}
\begin{split}
p\to q\\
\lnot q\\
\therefore \lnot p
\end{split}
\end{equation}
Contrapositive of modus ponens.
\end{document}