Add lecture
This commit is contained in:
parent
86d6a28a12
commit
a7aee74fab
1 changed files with 40 additions and 0 deletions
|
@ -28,6 +28,46 @@
|
|||
\maketitle
|
||||
\pagenumbering{arabic}
|
||||
|
||||
Multiple mixed quantifiers are different.
|
||||
|
||||
\begin{equation}
|
||||
\forall x\forall y P(x,y)=\forall y\forall x P(x,y)
|
||||
\end{equation}
|
||||
|
||||
However\dots
|
||||
\begin{equation}
|
||||
\forall x\exists y P(x,y) \neq \exists y\forall x P(x,y)
|
||||
\end{equation}
|
||||
The first says, \say{For all x, there is some y such that $x+y=0$}.
|
||||
The second says, \say{For some y, all x fit the statement $x+y=0$}.
|
||||
|
||||
How do you negate multiple quantified statements? You follow DeMorgans, repeatedly.
|
||||
|
||||
\section{Inferencing}%
|
||||
\label{sec:Inferencing}
|
||||
|
||||
\subsection{Arguments}%
|
||||
\label{sub:Arguments}
|
||||
|
||||
All statements in an argument are premises (except the last, which is the conclusion).
|
||||
The argument is valid if the conclusion is true when all premises are true.
|
||||
\emph{Modus Ponens}
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
q\to p\\
|
||||
q\\
|
||||
\therefore p
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
\emph{Modus Tollens}
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
p\to q\\
|
||||
\lnot q\\
|
||||
\therefore \lnot p
|
||||
\end{split}
|
||||
\end{equation}
|
||||
Contrapositive of modus ponens.
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Add table
Reference in a new issue