End of lecture push

This commit is contained in:
Blizzard Finnegan 2022-01-13 13:12:37 -05:00
parent 0b73efd08c
commit c88f9191bd

View file

@ -0,0 +1,98 @@
% File: 13-01-2022.tex
% Created: 12:22:44 Thu, 13 Jan 2022 EST
% Last Change: 12:22:44 Thu, 13 Jan 2022 EST
%
\documentclass[letterpaper]{article}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{cancel}
\usepackage{amssymb}
\usepackage{listings}
\usepackage[shortlabels]{enumitem}
\usepackage{soul}
%\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown}
%\usepackage{minted}
\usepackage{geometry}
\usepackage{dirtytalk}
\usepackage{lplfitch}
\geometry{portrait, margin=1in}
%\begin{minted}[linenos,bgcolor=LightGray]{[language]}
\date{01/13/2022}
\title{%
Lecture \\
\large MATH--190--04: Discrete Mathematics for Computing}
\author{Blizzard MacDougall}
\begin{document}
\maketitle
\pagenumbering{arabic}
\section{Beginning Practice Problems}
Make a truth table for the following:
\begin{equation}
(p\land q) \leftrightarrow (p\lor q)
\end{equation}
\begin{center}
\begin{tabular}{c|c||c|c|c}
$p$ & $q$ & $p\land q$ & $p\lor q$ & $(p\land q) \leftrightarrow (p \lor q)$\\
\hline
1 & 1 & 1 & 1 & 1\\
1 & 0 & 0 & 1 & 0\\
0 & 1 & 0 & 1 & 0\\
0 & 0 & 0 & 0 & 1
\end{tabular}
\end{center}
Note that this is functionally equivalent to $p\leftrightarrow q$.
\begin{equation}
[p\land (q \lor r)]\to(\lnot r)
\end{equation}
\begin{center}
\begin{tabular}{c|c|c||c|c|c|c}
$p$ & $q$ & $r$ & $q\lor r$ & $p\land (q\lor r)$ & $\lnot r$ & $[p\land (q\lor r)]\to(\lnot r)$\\
\hline
\end{tabular}
\end{center}
\section{New Notes}
Remember from PHIL-205:
\begin{itemize}
\item Tautology: A statement which is \emph{always} true.
\item Contradiction: A statement which is \emph{always} false.
\item Commutative Property: $p\land q \equiv q\land p$ (also works for \verb|OR|)
\item Associative Property: $(p\land q) \land r \equiv p\land (q\land r)$ (also works for \verb|OR|)
Note that this does \emph{not} work with mixed symbols.
\item Distributive Property: $p\land (q\land r) \equiv (p\land q)\land (p\land r)$ (also works for \verb|OR|)
Note that this \emph{does} work with mixed symbols.
\item Identity: $p\land T \equiv p$; $p\lor F \equiv p$
\item Negation: $p\land \lnot p \equiv F$; $p\lor \lnot p \equiv T$
\item Double Negation (obvious)
\item Idempotent $p\land p\equiv p$; $p\lor p\equiv p$
\item Domination Laws: True dominates \verb|OR|, false dominates \verb|AND|
\item DeMorgan's: Split the line, change the sign
\item Absorption: $p\lor (p\land q)\equiv p$;\ $p\land (\lor q)\equiv p$
\end{itemize}
\subsection{Conditionals}
Now, how do we negate a conditional?
\begin{equation}
\lnot(p\to q)\equiv \lnot(\lnot p\lor q)\equiv p\land \lnot q
\end{equation}
There is also a \emph{contrapositive}. Given $p\to q$, the contrapositive is
$\lnot q\to\lnot p$. Note that these two statements have the same truth value.
There is also the converse, and the inverse.
The converse swaps the two terms of a conditional. The inverse negates the terms.
Note that these "transforms" don't preserve the truth value of the statement.
However, the converse and the inverse \emph{do} preserve truth.
\end{document}