Mid-lecture commit
This commit is contained in:
parent
d403fc1eb1
commit
d4fef57913
1 changed files with 82 additions and 0 deletions
82
week8/03-03-2022/03-03-2022.tex
Normal file
82
week8/03-03-2022/03-03-2022.tex
Normal file
|
@ -0,0 +1,82 @@
|
|||
% File: 20-01-2022.tex
|
||||
% Created: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
% Last Change: 12:28:35 Thu, 20 Jan 2022 EST
|
||||
%
|
||||
\documentclass[letterpaper]{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{cancel}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{listings}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
\usepackage{soul}
|
||||
%\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown}
|
||||
\usepackage{geometry}
|
||||
\usepackage{dirtytalk}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{lplfitch}
|
||||
|
||||
\geometry{portrait, margin=1in}
|
||||
|
||||
%\begin{minted}[linenos,bgcolor=LightGray]{[language]}
|
||||
|
||||
\date{02/17/2022}
|
||||
\title{%
|
||||
Induction and Recursion\\
|
||||
\large MATH--190--01 : Discrete Mathematics for Computing}
|
||||
\author{Blizzard MacDougall}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\pagenumbering{arabic}
|
||||
|
||||
We've seen that $\sum\limits^{100}_{i=0}k=\frac{100*101}{2}=5050$
|
||||
Now we're going to find out \emph{why}.
|
||||
To do this, we'll use induction.
|
||||
This is a demonstration of how induction generally works.
|
||||
All of these steps need to explicitly be shown.
|
||||
|
||||
First, we need to prove that our predicate is true for one case.
|
||||
In this case, we need need to show that $\sum\limits^{1}_{k=1}k=1=\frac{1(1+1)}{2}=1$
|
||||
|
||||
Next, we must show that for every $n\geq a$, if $P(n)$ is true, $P(n+1)$ is also true.
|
||||
To do this, suppose that the aforementioned case is in fact true. Then show that
|
||||
$P(n+1)$ is true. In our case, we assume that $\sum\limits^{n}_{k=1}k=\frac{n(n+1)}{2}$
|
||||
is in fact true. Now, we need to prove that it works when $n=n+1$.
|
||||
So, we can say the following:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\sum^{n+1}_{k=1} k=\sum^{n}_{k=1}k + (n+1)\\
|
||||
=\frac{n(n+1)}{2} +(n+1)\\
|
||||
=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}\\
|
||||
=\frac{n^2+n+2n+2}{2}\\
|
||||
=\frac{n^2+3n+2}{n}\\
|
||||
=\frac{(n+1)(n+2)}{2}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
So, lets prove this:
|
||||
\begin{equation}
|
||||
\sum^{n}_{k=0}r^k=\frac{r^{n+1}-1}{r-1}
|
||||
\end{equation}
|
||||
What must be proved in the base case?
|
||||
In this case, we need to prove that it works for $n=0$.
|
||||
This is done like so:
|
||||
\begin{equation}
|
||||
\sum^{0}_{k=0}r^k=r^0=\frac{r^{0+1}-1}{r-1}=\frac{r-1}{r-1}=1
|
||||
\end{equation}
|
||||
Next, we state our inductive hypothesis, that is:
|
||||
\begin{equation}
|
||||
\sum^{n}_{k=0}r^k=\frac{r^{n+1}-1}{r-1}
|
||||
\end{equation}
|
||||
Finally, we solve for $n=n+1$:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\sum^{n+1}_{k=0}r^k=\sum^{n}_{k=0}r^k+r^{n+1}\\
|
||||
=\frac{r^{n+1}-1}{r-1}+r^{n+1}\\
|
||||
=\frac{r^{n+1}-1}{r-1}+\frac{(r-1)r^{n+1}}{r-1}\\
|
||||
=\frac{\cancel{r^{n+1}}-1+r^{n+2}-\cancel{r^{n+1}}}{r-1}\\
|
||||
=\frac{r^{n+2}-1}{r-1}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
Loading…
Add table
Reference in a new issue