ReonV/lib/cypress/ssram/cy7c1354b.vhd

443 lines
16 KiB
VHDL

-----------------------------------------------------------------------------------------
--
-- File Name: CY7C1354B.VHD
-- Version: 2.0
-- Date: Nov 22nd, 2004
-- Model: BUS Functional
--
--
-- Author: RKF
-- Company: Cypress Semiconductor
-- Model: CY7C1354B (256k x 36)
-- Mode: Pipelined
--
-- Description: NoBL SRAM VHDL Model
--
-- Limitation: None
--
-- Note: - BSDL Model available separately
-- - Set simulator resolution to "ps" timescale
--
-- Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY
-- WHATSOEVER AND CYPRESS SPECIFICALLY DISCLAIMS ANY
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
-- A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
--
-- Copyright (c) 2004 Cypress Semiconductor
-- All rights reserved
--
-- Trademarks: NoBL and No Bus Latency are trademarks of Cypress Semiconductor
--
-- Rev Author Date Changes
-- --- -------- ------- ----------
-- 2.0 RKF 11/22/2004 - Second Release
-- - Fully Tested with New Test Bench and Test Vectors
-----------------------------------------------------------------------------------------
LIBRARY ieee,work,grlib;
USE ieee.std_logic_1164.all;
-- USE ieee.std_logic_unsigned.all;
-- Use IEEE.Std_Logic_Arith.all;
-- Use work.all;
USE work.package_utility.all;
use grlib.stdlib.all;
use grlib.stdio.all;
use ieee.std_logic_1164.all;
use std.textio.all;
ENTITY cy7c1354 IS
GENERIC (
fname : string := "prom.srec"; -- File to read from
-- Constant parameters
addr_bits : INTEGER := 18;
data_bits : INTEGER := 36;
-- Timing parameters for -5 (225 Mhz)
tCYC : TIME := 4.4 ns;
tCH : TIME := 1.8 ns;
tCL : TIME := 1.8 ns;
tCO : TIME := 2.8 ns;
tAS : TIME := 1.4 ns;
tCENS : TIME := 1.4 ns;
tWES : TIME := 1.4 ns;
tDS : TIME := 1.4 ns;
tAH : TIME := 0.4 ns;
tCENH : TIME := 0.4 ns;
tWEH : TIME := 0.4 ns;
tDH : TIME := 0.4 ns
-- Timing parameters for -5 (200 Mhz)
--tCYC : TIME := 5.0 ns;
--tCH : TIME := 2.0 ns;
--tCL : TIME := 2.0 ns;
--tCO : TIME := 3.2 ns;
--tAS : TIME := 1.5 ns;
--tCENS : TIME := 1.5 ns;
--tWES : TIME := 1.5 ns;
--tDS : TIME := 1.5 ns;
--tAH : TIME := 0.5 ns;
--tCENH : TIME := 0.5 ns;
--tWEH : TIME := 0.5 ns;
--tDH : TIME := 0.5 ns
-- Timing parameters for -5 (166 Mhz)
--tCYC : TIME := 6.0 ns;
--tCH : TIME := 2.4 ns;
--tCL : TIME := 2.4 ns;
--tCO : TIME := 3.5 ns;
--tAS : TIME := 1.5 ns;
--tCENS : TIME := 1.5 ns;
--tWES : TIME := 1.5 ns;
--tDS : TIME := 1.5 ns;
--tAH : TIME := 0.5 ns;
--tCENH : TIME := 0.5 ns;
--tWEH : TIME := 0.5 ns;
--tDH : TIME := 0.5 ns
);
-- Port Declarations
PORT (
Dq : INOUT STD_LOGIC_VECTOR ((data_bits - 1) DOWNTO 0); -- Data I/O
Addr : IN STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0); -- Address
Mode : IN STD_LOGIC := '1'; -- Burst Mode
Clk : IN STD_LOGIC; -- Clk
CEN_n : IN STD_LOGIC; -- CEN#
AdvLd_n : IN STD_LOGIC; -- Adv/Ld#
Bwa_n : IN STD_LOGIC; -- Bwa#
Bwb_n : IN STD_LOGIC; -- BWb#
Bwc_n : IN STD_LOGIC; -- Bwc#
Bwd_n : IN STD_LOGIC; -- BWd#
Rw_n : IN STD_LOGIC; -- RW#
Oe_n : IN STD_LOGIC; -- OE#
Ce1_n : IN STD_LOGIC; -- CE1#
Ce2 : IN STD_LOGIC; -- CE2
Ce3_n : IN STD_LOGIC; -- CE3#
Zz : IN STD_LOGIC -- Snooze Mode
);
END cy7c1354;
ARCHITECTURE behave OF cy7c1354 IS
SIGNAL ce : STD_LOGIC := '0';
SIGNAL doe : STD_LOGIC := '0';
SIGNAL dout : STD_LOGIC_VECTOR ((data_bits - 1) DOWNTO 0) := (OTHERS => 'Z');
SIGNAL Addr_read_sig : STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0) := (OTHERS => 'Z');
BEGIN
ce <= NOT(Ce1_n) AND NOT(Ce3_n) AND Ce2;
doe <= NOT(Oe_n) AND NOT(Zz);
-- Output Buffers
WITH doe SELECT
Dq <= TRANSPORT dout AFTER (tCO) WHEN '1',
(OTHERS => 'Z') AFTER (tCO) WHEN OTHERS;
-- Check for Clock Timing Violation
-- clk_check : PROCESS
-- VARIABLE clk_high, clk_low : TIME := 0 ns;
-- BEGIN
-- WAIT ON Clk;
-- IF Clk = '1' AND NOW >= tCYC THEN
-- ASSERT (NOW - clk_low >= tCH)
-- REPORT "Clk width low - tCH violation"
-- SEVERITY ERROR;
-- ASSERT (NOW - clk_high >= tCYC)
-- REPORT "Clk period high - tCYC violation"
-- SEVERITY ERROR;
-- clk_high := NOW;
-- ELSIF Clk = '0' AND NOW /= 0 ns THEN
-- ASSERT (NOW - clk_high >= tCL)
-- REPORT "Clk width high - tCL violation"
-- SEVERITY ERROR;
-- ASSERT (NOW - clk_low >= tCYC)
-- REPORT "Clk period low - tCYC violation"
-- SEVERITY ERROR;
-- clk_low := NOW;
-- END IF;
-- END PROCESS;
-- Check for Setup Timing Violation
setup_check : PROCESS
BEGIN
WAIT ON Clk;
IF Clk = '1' THEN
ASSERT (Addr'LAST_EVENT >= tAS)
REPORT "Addr - tAS violation"
SEVERITY ERROR;
ASSERT (CEN_n'LAST_EVENT >= tCENS)
REPORT "CKE# - tCENS violation"
SEVERITY ERROR;
ASSERT (Ce1_n'LAST_EVENT >= tWES)
REPORT "CE1# - tWES violation"
SEVERITY ERROR;
ASSERT (Ce2'LAST_EVENT >= tWES)
REPORT "CE2 - tWES violation"
SEVERITY ERROR;
ASSERT (Ce3_n'LAST_EVENT >= tWES)
REPORT "CE3# - tWES violation"
SEVERITY ERROR;
ASSERT (AdvLd_n'LAST_EVENT >= tWES)
REPORT "ADV/LD# - tWES violation"
SEVERITY ERROR;
ASSERT (Rw_n'LAST_EVENT >= tWES)
REPORT "RW# - tWES violation"
SEVERITY ERROR;
ASSERT (Bwa_n'LAST_EVENT >= tWES)
REPORT "BWa# - tWES violation"
SEVERITY ERROR;
ASSERT (Bwb_n'LAST_EVENT >= tWES)
REPORT "BWb# - tWES violation"
SEVERITY ERROR;
ASSERT (Bwc_n'LAST_EVENT >= tWES)
REPORT "BWc# - tWES violation"
SEVERITY ERROR;
ASSERT (Bwd_n'LAST_EVENT >= tWES)
REPORT "BWd# - tWES violation"
SEVERITY ERROR;
--ASSERT (Dq'LAST_EVENT >= tDS)
-- REPORT "Dq - tDS violation"
-- SEVERITY ERROR;
END IF;
END PROCESS;
-- Check for Hold Timing Violation
hold_check : PROCESS
BEGIN
WAIT ON Clk'DELAYED(tAH), Clk'DELAYED(tCENH), Clk'DELAYED(tWEH), Clk'DELAYED(tDH);
IF Clk'DELAYED(tAH) = '1' THEN
ASSERT (Addr'LAST_EVENT > tAH)
REPORT "Addr - tAH violation"
SEVERITY ERROR;
END IF;
IF Clk'DELAYED(tCENH) = '1' THEN
ASSERT (CEN_n'LAST_EVENT > tCENH)
REPORT "CKE# - tCENH violation"
SEVERITY ERROR;
END IF;
--IF Clk'DELAYED(tDH) = '1' THEN
-- ASSERT (Dq'LAST_EVENT > tDH)
-- REPORT "Dq - tDH violation"
-- SEVERITY ERROR;
--END IF;
IF Clk'DELAYED(tWEH) = '1' THEN
ASSERT (Ce1_n'LAST_EVENT > tWEH)
REPORT "CE1# - tWEH violation"
SEVERITY ERROR;
ASSERT (Ce2'LAST_EVENT > tWEH)
REPORT "CE2 - tWEH violation"
SEVERITY ERROR;
ASSERT (Ce3_n'LAST_EVENT > tWEH)
REPORT "CE3 - tWEH violation"
SEVERITY ERROR;
ASSERT (AdvLd_n'LAST_EVENT > tWEH)
REPORT "ADV/LD# - tWEH violation"
SEVERITY ERROR;
ASSERT (Rw_n'LAST_EVENT > tWEH)
REPORT "RW# - tWEH violation"
SEVERITY ERROR;
ASSERT (Bwa_n'LAST_EVENT > tWEH)
REPORT "BWa# - tWEH violation"
SEVERITY ERROR;
ASSERT (Bwb_n'LAST_EVENT > tWEH)
REPORT "BWb# - tWEH violation"
SEVERITY ERROR;
ASSERT (Bwc_n'LAST_EVENT > tWEH)
REPORT "BWc# - tWEH violation"
SEVERITY ERROR;
ASSERT (Bwd_n'LAST_EVENT > tWEH)
REPORT "BWd# - tWEH violation"
SEVERITY ERROR;
END IF;
END PROCESS;
-- Main Program
main : PROCESS
-- TYPE memory_array IS ARRAY ((2**addr_bits) - 1 DOWNTO 0) OF STD_LOGIC_VECTOR ((data_bits / 4) - 1 DOWNTO 0);
TYPE memory_array IS ARRAY (0 TO (2**addr_bits) - 1) OF STD_LOGIC_VECTOR ((data_bits / 4) - 1 DOWNTO 0);
VARIABLE Addr_in : STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0) := (OTHERS => '0');
VARIABLE first_Addr : STD_LOGIC_VECTOR (1 DOWNTO 0) := (OTHERS => '0');
VARIABLE Addr_read : STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0) := (OTHERS => '0');
VARIABLE Addr_write : STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0) := (OTHERS => '0');
VARIABLE bAddr0, bAddr1 : STD_LOGIC := '0';
VARIABLE bank0 : memory_array;
VARIABLE bank1 : memory_array;
VARIABLE bank2 : memory_array;
VARIABLE bank3 : memory_array;
VARIABLE ce_in : STD_LOGIC_VECTOR (1 DOWNTO 0) := "00";
VARIABLE rw_in : STD_LOGIC_VECTOR (2 DOWNTO 0) := "111";
VARIABLE bwa_in : STD_LOGIC_VECTOR (2 DOWNTO 0) := "000";
VARIABLE bwb_in : STD_LOGIC_VECTOR (2 DOWNTO 0) := "000";
VARIABLE bwc_in : STD_LOGIC_VECTOR (2 DOWNTO 0) := "000";
VARIABLE bwd_in : STD_LOGIC_VECTOR (2 DOWNTO 0) := "000";
VARIABLE bcnt : STD_LOGIC_VECTOR (1 DOWNTO 0) := "00";
variable FIRST : boolean := true;
file TCF : text open read_mode is fname;
variable rectype : std_logic_vector(3 downto 0);
variable recaddr : std_logic_vector(31 downto 0);
variable reclen : std_logic_vector(7 downto 0);
variable recdata : std_logic_vector(0 to 16*8-1);
variable CH : character;
variable ai : integer := 0;
variable L1 : line;
BEGIN
if FIRST then
L1:= new string'("");
while not endfile(TCF) loop
readline(TCF,L1);
if (L1'length /= 0) then
while (not (L1'length=0)) and (L1(L1'left) = ' ') loop
std.textio.read(L1,CH);
end loop;
if L1'length > 0 then
std.textio.read(L1, ch);
if (ch = 'S') or (ch = 's') then
hread(L1, rectype);
hread(L1, reclen);
recaddr := (others => '0');
case rectype is
when "0001" =>
hread(L1, recaddr(15 downto 0));
when "0010" =>
hread(L1, recaddr(23 downto 0));
when "0011" =>
hread(L1, recaddr);
recaddr(31 downto 24) := (others => '0');
when others => next;
end case;
hread(L1, recdata);
ai := conv_integer(recaddr)/4;
for i in 0 to 3 loop
bank3 (ai+i) := '0' & recdata((i*32) to (i*32+7));
bank2 (ai+i) := '0' & recdata((i*32+8) to (i*32+8+7));
bank1 (ai+i) := '0' & recdata((i*32+16) to (i*32+16+7));
bank0 (ai+i) := '0' & recdata((i*32+24) to (i*32+24+7));
end loop;
end if;
end if;
end if;
end loop;
FIRST := false;
end if;
WAIT ON Clk;
IF Clk'EVENT AND Clk = '1' THEN
IF CEN_n = '0' AND Zz = '0' THEN
-- Write Address Register
Addr_write := Addr_read;
-- Read Address Register
Addr_read := Addr_in ((addr_bits - 1) DOWNTO 2) & bAddr1 & bAddr0;
-- Address Register
IF AdvLd_n = '0' and ce = '1' THEN
Addr_in := Addr;
first_Addr := Addr(1 DOWNTO 0);
bcnt := Addr(1 DOWNTO 0);
END IF;
-- Burst Logic
IF Mode = '0' AND AdvLd_n = '1' THEN
bcnt := bcnt + 1;
ELSIF Mode = '1' AND AdvLd_n = '1' THEN
IF (CONV_INTEGER1 (first_Addr) REM 2 = 0) THEN
bcnt := bcnt + 1;
ELSIF (CONV_INTEGER1 (first_Addr) REM 2 = 1) THEN
bcnt := bcnt - 1;
END IF;
END IF;
bAddr1 := bcnt (1);
bAddr0 := bcnt (0);
-- Read Logic
ce_in (0) := ce_in (1);
IF AdvLd_n = '0' THEN
ce_in (1) := ce;
END IF;
rw_in (0) := rw_in (1);
rw_in (1) := rw_in (2);
IF AdvLd_n = '0' THEN
rw_in (2) := NOT(ce AND NOT(Rw_n));
END IF;
-- Write Registry and Data Coherency Control Logic
bwa_in (0) := bwa_in (1);
bwb_in (0) := bwb_in (1);
bwc_in (0) := bwc_in (1);
bwd_in (0) := bwd_in (1);
bwa_in (1) := bwa_in (2);
bwb_in (1) := bwb_in (2);
bwc_in (1) := bwc_in (2);
bwd_in (1) := bwd_in (2);
bwa_in (2) := Bwa_n;
bwb_in (2) := Bwb_n;
bwc_in (2) := Bwc_n;
bwd_in (2) := Bwd_n;
-- Write Data to Memory
IF rw_in (0) = '0' AND bwa_in (0) = '0' THEN
bank0 (CONV_INTEGER1 (Addr_write)) := '0' & Dq ( ((data_bits-4) / 4) - 1 DOWNTO 0);
END IF;
IF rw_in (0) = '0' AND bwb_in (0) = '0' THEN
bank1 (CONV_INTEGER1 (Addr_write)) := '0' & Dq (((data_bits-4) / 2 - 1) DOWNTO ((data_bits-4) / 4));
END IF;
IF rw_in (0) = '0' AND bwc_in (0) = '0' THEN
bank2 (CONV_INTEGER1 (Addr_write)) := '0' & Dq ((3 * ((data_bits-4) / 4)) - 1 DOWNTO ((data_bits-4) / 2));
END IF;
IF rw_in (0) = '0' AND bwd_in (0) = '0' THEN
bank3 (CONV_INTEGER1 (Addr_write)) := '0' & Dq ((data_bits-4) - 1 DOWNTO (3 * ((data_bits-4) / 4)));
END IF;
END IF;
Addr_read_sig <= Addr_read;
-- Read Data from Memory Array
IF ce_in (0) = '1' AND rw_in (1) = '1' THEN
dout (((data_bits-4) / 4) - 1 DOWNTO 0) <= bank0 (CONV_INTEGER1 (Addr_read))(7 downto 0);
dout (((data_bits-4) / 2 - 1) DOWNTO ((data_bits-4) / 4)) <= bank1 (CONV_INTEGER1 (Addr_read))(7 downto 0);
dout ((3 * ((data_bits-4) / 4)) - 1 DOWNTO ((data_bits-4) / 2)) <= bank2 (CONV_INTEGER1 (Addr_read))(7 downto 0);
dout ((data_bits-4) - 1 DOWNTO (3 * ((data_bits-4) / 4))) <= bank3 (CONV_INTEGER1 (Addr_read))(7 downto 0);
-- dout ((data_bits / 4) - 1 DOWNTO 0) <= bank0 (CONV_INTEGER1 (Addr_read));
-- dout ((data_bits / 2 - 1) DOWNTO (data_bits / 4)) <= bank1 (CONV_INTEGER1 (Addr_read));
-- dout ((3 * (data_bits / 4)) - 1 DOWNTO (data_bits / 2)) <= bank2 (CONV_INTEGER1 (Addr_read));
-- dout (data_bits - 1 DOWNTO (3 * (data_bits / 4))) <= bank3 (CONV_INTEGER1 (Addr_read));
ELSE
dout <= (OTHERS => 'Z');
END IF;
END IF;
END PROCESS;
END behave;