ReonV/lib/gaisler/arith/div32.vhd

219 lines
7 KiB
VHDL

------------------------------------------------------------------------------
-- This file is a part of the GRLIB VHDL IP LIBRARY
-- Copyright (C) 2003 - 2008, Gaisler Research
-- Copyright (C) 2008 - 2014, Aeroflex Gaisler
-- Copyright (C) 2015 - 2017, Cobham Gaisler
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-----------------------------------------------------------------------------
-- Entity: div32
-- File: div32.vhd
-- Author: Jiri Gaisler - Gaisler Research
-- Description: This unit implemets a divide unit to execute 64-bit by 32-bit
-- division. The divider leaves no remainder.
-- Overflow detection is performed according to the
-- SPARC V8 manual, method B (page 116)
-- Division is made using the non-restoring algorithm,
-- and takes 36 clocks. The operands must be stable during
-- the calculations. The result is available one clock after
-- the ready signal is asserted.
------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.config_types.all;
use grlib.config.all;
use grlib.stdlib.all;
library gaisler;
use gaisler.arith.all;
entity div32 is
generic (scantest : integer := 0);
port (
rst : in std_ulogic;
clk : in std_ulogic;
holdn : in std_ulogic;
divi : in div32_in_type;
divo : out div32_out_type;
testen : in std_ulogic := '0';
testrst : in std_ulogic := '1'
);
end;
architecture rtl of div32 is
type div_regtype is record
x : std_logic_vector(64 downto 0);
state : std_logic_vector(2 downto 0);
zero : std_logic;
zero2 : std_logic;
qcorr : std_logic;
zcorr : std_logic;
qzero : std_logic;
qmsb : std_logic;
ovf : std_logic;
neg : std_logic;
cnt : std_logic_vector(4 downto 0);
end record;
constant RESET_ALL : boolean := GRLIB_CONFIG_ARRAY(grlib_sync_reset_enable_all) = 1;
constant ASYNC_RESET : boolean := GRLIB_CONFIG_ARRAY(grlib_async_reset_enable) = 1;
constant RRES : div_regtype := (
x => (others => '0'),
state => (others => '0'),
zero => '0',
zero2 => '0',
qcorr => '0',
zcorr => '0',
qzero => '0',
qmsb => '0',
ovf => '0',
neg => '0',
cnt => (others => '0'));
signal arst : std_ulogic;
signal r, rin : div_regtype;
signal addin1, addin2, addout: std_logic_vector(32 downto 0);
signal addsub : std_logic;
begin
arst <= testrst when (ASYNC_RESET and scantest/=0 and testen/='0') else
rst when ASYNC_RESET else
'1';
divcomb : process (r, rst, divi, addout)
variable v : div_regtype;
variable vready, vnready : std_logic;
variable vaddin1, vaddin2 : std_logic_vector(32 downto 0);
variable vaddsub, ymsb : std_logic;
constant zero33: std_logic_vector(32 downto 0) := "000000000000000000000000000000000";
begin
vready := '0'; vnready := '0'; v := r;
if addout = zero33 then v.zero := '1'; else v.zero := '0'; end if;
vaddin1 := r.x(63 downto 31); vaddin2 := divi.op2;
vaddsub := not (divi.op2(32) xor r.x(64));
v.zero2 := r.zero;
case r.state is
when "000" =>
v.cnt := "00000";
if (divi.start = '1') then
v.x(64) := divi.y(32); v.state := "001";
end if;
when "001" =>
v.x := divi.y & divi.op1(31 downto 0);
v.neg := divi.op2(32) xor divi.y(32);
if divi.signed = '1' then
vaddin1 := divi.y(31 downto 0) & divi.op1(31);
v.ovf := not (addout(32) xor divi.y(32));
else
vaddin1 := divi.y; vaddsub := '1';
v.ovf := not addout(32);
end if;
v.state := "010";
when "010" =>
if ((divi.signed and r.neg and r.zero) = '1') and (divi.op1 = zero33) then v.ovf := '0'; end if;
v.qmsb := vaddsub; v.qzero := '1';
v.x(64 downto 32) := addout;
v.x(31 downto 0) := r.x(30 downto 0) & vaddsub;
v.state := "011"; v.zcorr := v.zero;
v.cnt := r.cnt + 1;
when "011" =>
v.qzero := r.qzero and (vaddsub xor r.qmsb);
v.zcorr := r.zcorr or v.zero;
v.x(64 downto 32) := addout;
v.x(31 downto 0) := r.x(30 downto 0) & vaddsub;
if (r.cnt = "11111") then v.state := "100"; vnready := '1';
else v.cnt := r.cnt + 1; end if;
v.qcorr := v.x(64) xor divi.y(32);
when "100" =>
vaddin1 := r.x(64 downto 32);
v.state := "101";
when others =>
vaddin1 := ((not r.x(31)) & r.x(30 downto 0) & '1');
vaddin2 := (others => '0'); vaddin2(0) := '1';
vaddsub := (not r.neg);-- or (r.zcorr and not r.qcorr);
if ((r.qcorr = '1') or (r.zero = '1')) and (r.zero2 = '0') then
if (r.zero = '1') and ((r.qcorr = '0') and (r.zcorr = '1')) then
vaddsub := r.neg; v.qzero := '0';
end if;
v.x(64 downto 32) := addout;
else
v.x(64 downto 32) := vaddin1; v.qzero := '0';
end if;
if (r.ovf = '1') then
v.qzero := '0';
v.x(63 downto 32) := (others => '1');
if divi.signed = '1' then
if r.neg = '1' then v.x(62 downto 32) := (others => '0');
else v.x(63) := '0'; end if;
end if;
end if;
vready := '1';
v.state := "000";
end case;
divo.icc <= r.x(63) & r.qzero & r.ovf & '0';
if (divi.flush = '1') then v.state := "000"; end if;
if (not ASYNC_RESET) and (not RESET_ALL) and (rst = '0') then
v.state := RRES.state; v.cnt := RRES.cnt;
end if;
rin <= v;
divo.ready <= vready; divo.nready <= vnready;
divo.result(31 downto 0) <= r.x(63 downto 32);
addin1 <= vaddin1; addin2 <= vaddin2; addsub <= vaddsub;
end process;
divadd : process(addin1, addin2, addsub)
variable b : std_logic_vector(32 downto 0);
begin
if addsub = '1' then b := not addin2; else b := addin2; end if;
addout <= addin1 + b + addsub;
end process;
syncrregs : if not ASYNC_RESET generate
reg : process(clk)
begin
if rising_edge(clk) then
if (holdn = '1') then r <= rin; end if;
if (rst = '0') then
if RESET_ALL then
r <= RRES;
else
r.state <= RRES.state; r.cnt <= RRES.cnt;
end if;
end if;
end if;
end process;
end generate syncrregs;
asyncrregs : if ASYNC_RESET generate
reg : process(clk, arst)
begin
if (arst = '0') then
r <= RRES;
elsif rising_edge(clk) then
if (holdn = '1') then r <= rin; end if;
end if;
end process;
end generate asyncrregs;
end;