VexRiscv/src/main/scala/vexriscv/plugin/Fetcher.scala
2020-02-17 21:43:02 +01:00

605 lines
No EOL
25 KiB
Scala

package vexriscv.plugin
import vexriscv._
import spinal.core._
import spinal.lib._
import vexriscv.Riscv.IMM
import StreamVexPimper._
import scala.collection.mutable.ArrayBuffer
//TODO val killLastStage = jump.pcLoad.valid || decode.arbitration.isRemoved
// DBUSSimple check memory halt execute optimization
abstract class IBusFetcherImpl(val resetVector : BigInt,
val keepPcPlus4 : Boolean,
val decodePcGen : Boolean,
val compressedGen : Boolean,
val cmdToRspStageCount : Int,
val allowPcRegReusedForSecondStage : Boolean,
val injectorReadyCutGen : Boolean,
val prediction : BranchPrediction,
val historyRamSizeLog2 : Int,
val injectorStage : Boolean,
val relaxPredictorAddress : Boolean,
val fetchRedoGen : Boolean) extends Plugin[VexRiscv] with JumpService with IBusFetcher{
var prefetchExceptionPort : Flow[ExceptionCause] = null
var decodePrediction : DecodePredictionBus = null
var fetchPrediction : FetchPredictionBus = null
var dynamicTargetFailureCorrection : Flow[UInt] = null
var externalResetVector : UInt = null
assert(cmdToRspStageCount >= 1)
// assert(!(cmdToRspStageCount == 1 && !injectorStage))
assert(!(compressedGen && !decodePcGen))
var fetcherHalt : Bool = null
var fetcherflushIt : Bool = null
var pcValids : Vec[Bool] = null
def pcValid(stage : Stage) = pcValids(pipeline.indexOf(stage))
var incomingInstruction : Bool = null
override def incoming() = incomingInstruction
var injectionPort : Stream[Bits] = null
override def getInjectionPort() = {
injectionPort = Stream(Bits(32 bits))
injectionPort
}
def pcRegReusedForSecondStage = allowPcRegReusedForSecondStage && prediction != DYNAMIC_TARGET
var predictionJumpInterface : Flow[UInt] = null
override def haltIt(): Unit = fetcherHalt := True
override def flushIt(): Unit = fetcherflushIt := True
case class JumpInfo(interface : Flow[UInt], stage: Stage, priority : Int)
val jumpInfos = ArrayBuffer[JumpInfo]()
override def createJumpInterface(stage: Stage, priority : Int = 0): Flow[UInt] = {
assert(stage != null)
val interface = Flow(UInt(32 bits))
jumpInfos += JumpInfo(interface,stage, priority)
interface
}
// var decodeExceptionPort : Flow[ExceptionCause] = null
override def setup(pipeline: VexRiscv): Unit = {
fetcherHalt = False
fetcherflushIt = False
incomingInstruction = False
if(resetVector == null) externalResetVector = in(UInt(32 bits).setName("externalResetVector"))
pipeline(RVC_GEN) = compressedGen
prediction match {
case NONE =>
case STATIC | DYNAMIC => {
predictionJumpInterface = createJumpInterface(pipeline.decode)
decodePrediction = pipeline.service(classOf[PredictionInterface]).askDecodePrediction()
}
case DYNAMIC_TARGET => {
fetchPrediction = pipeline.service(classOf[PredictionInterface]).askFetchPrediction()
if(compressedGen){
dynamicTargetFailureCorrection = createJumpInterface(pipeline.decode)
}
}
}
pcValids = Vec(Bool, pipeline.stages.size)
}
object IBUS_RSP
object DECOMPRESSOR
object INJECTOR_M2S
def isDrivingDecode(s : Any): Boolean = {
if(injectorStage) return s == INJECTOR_M2S
if(compressedGen) return s == DECOMPRESSOR
s == IBUS_RSP
}
def getFlushAt(s : Any, lastCond : Boolean = true): Bool = {
if(isDrivingDecode(s) && lastCond) pipeline.decode.arbitration.isRemoved else fetcherflushIt
}
class FetchArea(pipeline : VexRiscv) extends Area {
import pipeline._
import pipeline.config._
//Arbitrate jump requests into pcLoad
val jump = new Area {
val sortedByStage = jumpInfos.sortWith((a, b) => {
(pipeline.indexOf(a.stage) > pipeline.indexOf(b.stage)) ||
(pipeline.indexOf(a.stage) == pipeline.indexOf(b.stage) && a.priority > b.priority)
})
val valids = sortedByStage.map(_.interface.valid)
val pcs = sortedByStage.map(_.interface.payload)
val pcLoad = Flow(UInt(32 bits))
pcLoad.valid := jumpInfos.map(_.interface.valid).orR
pcLoad.payload := MuxOH(OHMasking.first(valids.asBits), pcs)
}
fetcherflushIt setWhen(stages.map(_.arbitration.flushNext).orR)
//The fetchPC pcReg can also be use for the second stage of the fetch
//When the fetcherHalt is set and the pipeline isn't stalled,, the pc is propagated to to the pcReg, which allow
//using the pc pipeline to get the next PC value for interrupts
val fetchPc = new Area{
//PC calculation without Jump
val output = Stream(UInt(32 bits))
val pcReg = Reg(UInt(32 bits)) init(if(resetVector != null) resetVector else externalResetVector) addAttribute(Verilator.public)
val corrected = False
val pcRegPropagate = False
val booted = RegNext(True) init (False)
val inc = RegInit(False) clearWhen(corrected || pcRegPropagate) setWhen(output.fire) clearWhen(!output.valid && output.ready)
val pc = pcReg + (inc ## B"00").asUInt
val predictionPcLoad = ifGen(prediction == DYNAMIC_TARGET) (Flow(UInt(32 bits)))
val redo = fetchRedoGen generate Flow(UInt(32 bits))
val flushed = False
if(compressedGen) when(inc) {
pc(1) := False
}
if(predictionPcLoad != null) {
when(predictionPcLoad.valid) {
corrected := True
pc := predictionPcLoad.payload
}
}
if(fetchRedoGen) when(redo.valid){
corrected := True
pc := redo.payload
flushed := True
}
when(jump.pcLoad.valid) {
corrected := True
pc := jump.pcLoad.payload
flushed := True
}
when(booted && (output.ready || corrected || pcRegPropagate)){
pcReg := pc
}
pc(0) := False
if(!pipeline(RVC_GEN)) pc(1) := False
output.valid := !fetcherHalt && booted
output.payload := pc
}
val decodePc = ifGen(decodePcGen)(new Area {
//PC calculation without Jump
val flushed = False
val pcReg = Reg(UInt(32 bits)) init(if(resetVector != null) resetVector else externalResetVector) addAttribute(Verilator.public)
val pcPlus = if(compressedGen)
pcReg + ((decode.input(IS_RVC)) ? U(2) | U(4))
else
pcReg + 4
if (keepPcPlus4) KeepAttribute(pcPlus)
val injectedDecode = False
when(decode.arbitration.isFiring && !injectedDecode) {
pcReg := pcPlus
}
val predictionPcLoad = ifGen(prediction == DYNAMIC_TARGET) (Flow(UInt(32 bits)))
if(prediction == DYNAMIC_TARGET) {
when(predictionPcLoad.valid) {
pcReg := predictionPcLoad.payload
}
}
//application of the selected jump request
when(jump.pcLoad.valid && (!decode.arbitration.isStuck || decode.arbitration.isRemoved)) {
pcReg := jump.pcLoad.payload
flushed := True
}
})
case class FetchRsp() extends Bundle {
val pc = UInt(32 bits)
val rsp = IBusSimpleRsp()
val isRvc = Bool()
}
val iBusRsp = new Area {
val fetchFlush = False
val stages = Array.fill(cmdToRspStageCount + 1)(new Bundle {
val input = Stream(UInt(32 bits))
val output = Stream(UInt(32 bits))
val halt = Bool()
val flush = Bool()
})
stages(0).input << fetchPc.output
for(s <- stages) {
s.halt := False
s.output << s.input.haltWhen(s.halt)
}
stages.head.flush := False //getFlushAt(IBUS_RSP, stages.head == stages.last) || fetchFlush
for((s,sNext) <- (stages, stages.tail).zipped) {
val discardInputOnFlush = s != stages.head
sNext.flush := getFlushAt(IBUS_RSP, sNext == stages.last) || fetchFlush
if(s == stages.head && pcRegReusedForSecondStage) {
sNext.input.arbitrationFrom(s.output.toEvent().m2sPipeWithFlush(sNext.flush, false, collapsBubble = false, flushInput = s.flush))
sNext.input.payload := fetchPc.pcReg
fetchPc.pcRegPropagate setWhen(sNext.input.ready)
} else {
sNext.input << s.output.m2sPipeWithFlush(sNext.flush, false, collapsBubble = false, flushInput = s.flush)
}
}
val readyForError = True
val output = Stream(FetchRsp())
incomingInstruction setWhen(stages.tail.map(_.input.valid).reduce(_ || _))
}
val decompressor = ifGen(decodePcGen)(new Area{
val input = iBusRsp.output.clearValidWhen(iBusRsp.stages.last.flush)
val output = Stream(FetchRsp())
val flush = getFlushAt(DECOMPRESSOR)
val bufferValid = RegInit(False)
val bufferData = Reg(Bits(16 bits))
val raw = Mux(
sel = bufferValid,
whenTrue = input.rsp.inst(15 downto 0) ## bufferData,
whenFalse = input.rsp.inst(31 downto 16) ## (input.pc(1) ? input.rsp.inst(31 downto 16) | input.rsp.inst(15 downto 0))
)
val isRvc = raw(1 downto 0) =/= 3
val decompressed = RvcDecompressor(raw(15 downto 0))
output.valid := (isRvc ? (bufferValid || input.valid) | (input.valid && (bufferValid || !input.pc(1))))
output.pc := input.pc
output.isRvc := isRvc
output.rsp.inst := isRvc ? decompressed | raw
input.ready := !output.valid || !(!output.ready || (isRvc && !input.pc(1) && input.rsp.inst(16, 2 bits) =/= 3) || (!isRvc && bufferValid && input.rsp.inst(16, 2 bits) =/= 3))
addPrePopTask(() => {
when(!input.ready && output.fire && !flush /* && ((isRvc && !bufferValid && !input.pc(1)) || (!isRvc && bufferValid && input.rsp.inst(16, 2 bits) =/= 3))*/) {
input.pc.getDrivingReg(1) := True
}
})
bufferValid clearWhen(output.fire)
val bufferFill = False
when(input.fire){
when(!(!isRvc && !input.pc(1) && !bufferValid) && !(isRvc && input.pc(1) && output.ready)) {
bufferValid := True
bufferFill := True
} otherwise {
bufferValid := False
}
bufferData := input.rsp.inst(31 downto 16)
}
bufferValid.clearWhen(flush)
iBusRsp.readyForError.clearWhen(bufferValid && isRvc) //Can't emit error, as there is a earlier instruction pending
incomingInstruction setWhen(bufferValid && bufferData(1 downto 0) =/= 3)
})
def condApply[T](that : T, cond : Boolean)(func : (T) => T) = if(cond)func(that) else that
val injector = new Area {
val inputBeforeStage = condApply(if (decodePcGen) decompressor.output else iBusRsp.output, injectorReadyCutGen)(_.s2mPipe(fetcherflushIt))
if (injectorReadyCutGen) {
iBusRsp.readyForError.clearWhen(inputBeforeStage.valid) //Can't emit error if there is a instruction pending in the s2mPipe
incomingInstruction setWhen (inputBeforeStage.valid)
}
val decodeInput = (if (injectorStage) {
val flushStage = getFlushAt(INJECTOR_M2S)
val decodeInput = inputBeforeStage.m2sPipeWithFlush(flushStage, false, collapsBubble = false, flushInput = fetcherflushIt)
decode.insert(INSTRUCTION_ANTICIPATED) := Mux(decode.arbitration.isStuck, decode.input(INSTRUCTION), inputBeforeStage.rsp.inst)
iBusRsp.readyForError.clearWhen(decodeInput.valid) //Can't emit error when there is a instruction pending in the injector stage buffer
incomingInstruction setWhen (decodeInput.valid)
decodeInput
} else {
inputBeforeStage
})
if(!decodePcGen) iBusRsp.readyForError.clearWhen(!pcValid(decode)) //Need to wait a valid PC on the decode stage, as it is use to fill CSR xEPC
def pcUpdatedGen(input : Bool, stucks : Seq[Bool], relaxedInput : Boolean, flush : Bool) : Seq[Bool] = {
stucks.scanLeft(input)((i, stuck) => {
val reg = RegInit(False)
if(!relaxedInput) when(flush) {
reg := False
}
when(!stuck) {
reg := i
}
if(relaxedInput || i != input) when(flush) {
reg := False
}
reg
}).tail
}
val stagesFromExecute = stages.dropWhile(_ != execute).toList
val nextPcCalc = if (decodePcGen) new Area{
val valids = pcUpdatedGen(True, False :: stagesFromExecute.map(_.arbitration.isStuck), true, decodePc.flushed)
pcValids := Vec(valids.takeRight(stages.size))
} else new Area{
val valids = pcUpdatedGen(True, iBusRsp.stages.tail.map(!_.input.ready) ++ (if (injectorStage) List(!decodeInput.ready) else Nil) ++ stagesFromExecute.map(_.arbitration.isStuck), false, fetchPc.flushed)
pcValids := Vec(valids.takeRight(stages.size))
}
decodeInput.ready := !decode.arbitration.isStuck
decode.arbitration.isValid := decodeInput.valid
decode.insert(PC) := (if (decodePcGen) decodePc.pcReg else decodeInput.pc)
decode.insert(INSTRUCTION) := decodeInput.rsp.inst
if (compressedGen) decode.insert(IS_RVC) := decodeInput.isRvc
if (injectionPort != null) {
Component.current.addPrePopTask(() => {
val state = RegInit(U"000")
injectionPort.ready := False
if(decodePcGen){
decodePc.injectedDecode setWhen(state =/= 0)
}
switch(state) {
is(0) { //request pipelining
when(injectionPort.valid) {
state := 1
}
}
is(1) { //Give time to propagate the payload
state := 2
}
is(2){ //read regfile delay
decode.arbitration.isValid := True
decode.arbitration.haltItself := True
state := 3
}
is(3){ //Do instruction
decode.arbitration.isValid := True
when(!decode.arbitration.isStuck) {
state := 4
}
}
is(4){ //request pipelining
injectionPort.ready := True
state := 0
}
}
//Check if the decode instruction is driven by a register
val instructionDriver = try {
decode.input(INSTRUCTION).getDrivingReg
} catch {
case _: Throwable => null
}
if (instructionDriver != null) { //If yes =>
//Insert the instruction by writing the "fetch to decode instruction register",
// Work even if it need to cross some hierarchy (caches)
instructionDriver.component.rework {
when(state.pull() =/= 0) {
instructionDriver := injectionPort.payload.pull()
}
}
} else {
//Insert the instruction via a mux in the decode stage
when(state =/= 0) {
decode.input(INSTRUCTION) := RegNext(injectionPort.payload)
}
}
})
}
//Formal verification signals generation, miss prediction stuff ?
val formal = new Area {
val raw = if(compressedGen) decompressor.raw else inputBeforeStage.rsp.inst
val rawInDecode = Delay(raw, if(injectorStage) 1 else 0, when = decodeInput.ready)
decode.insert(FORMAL_INSTRUCTION) := rawInDecode
decode.insert(FORMAL_PC_NEXT) := (if (compressedGen)
decode.input(PC) + ((decode.input(IS_RVC)) ? U(2) | U(4))
else
decode.input(PC) + 4)
if(decodePc != null && decodePc.predictionPcLoad != null){
when(decodePc.predictionPcLoad.valid){
decode.insert(FORMAL_PC_NEXT) := decodePc.predictionPcLoad.payload
}
}
jumpInfos.foreach(info => {
when(info.interface.valid) {
info.stage.output(FORMAL_PC_NEXT) := info.interface.payload
}
})
}
}
def stage1ToInjectorPipe[T <: Data](input : T): (T,T) ={
val iBusRspContext = iBusRsp.stages.drop(1).dropRight(1).foldLeft(input)((data,stage) => RegNextWhen(data, stage.output.ready))
// val decompressorContext = ifGen(compressedGen)(new Area{
// val lastContext = RegNextWhen(iBusRspContext, decompressor.input.fire)
// val output = decompressor.bufferValid ? lastContext | iBusRspContext
// })
val decompressorContext = cloneOf(input)
decompressorContext := iBusRspContext
val injectorContext = Delay(if(compressedGen) decompressorContext else iBusRspContext, cycleCount=if(injectorStage) 1 else 0, when=injector.decodeInput.ready)
val injectorContextWire = cloneOf(input) //Allow combinatorial override
injectorContextWire := injectorContext
(ifGen(compressedGen)(decompressorContext), injectorContextWire)
}
val predictor = prediction match {
case NONE =>
case STATIC | DYNAMIC => {
def historyWidth = 2
val dynamic = ifGen(prediction == DYNAMIC) (new Area {
case class BranchPredictorLine() extends Bundle{
val history = SInt(historyWidth bits)
}
val historyCache = Mem(BranchPredictorLine(), 1 << historyRamSizeLog2)
val historyWrite = historyCache.writePort
val historyWriteLast = RegNextWhen(historyWrite, iBusRsp.stages(0).output.ready)
val hazard = historyWriteLast.valid && historyWriteLast.address === (iBusRsp.stages(0).input.payload >> 2).resized
case class DynamicContext() extends Bundle{
val hazard = Bool
val line = BranchPredictorLine()
}
val fetchContext = DynamicContext()
fetchContext.hazard := hazard
fetchContext.line := historyCache.readSync((fetchPc.output.payload >> 2).resized, iBusRsp.stages(0).output.ready || fetcherflushIt)
object PREDICTION_CONTEXT extends Stageable(DynamicContext())
decode.insert(PREDICTION_CONTEXT) := stage1ToInjectorPipe(fetchContext)._2
val decodeContextPrediction = decode.input(PREDICTION_CONTEXT).line.history.msb
val branchStage = decodePrediction.stage
val branchContext = branchStage.input(PREDICTION_CONTEXT)
val moreJump = decodePrediction.rsp.wasWrong ^ branchContext.line.history.msb
historyWrite.address := branchStage.input(PC)(2, historyRamSizeLog2 bits) + (if(pipeline(RVC_GEN))
((!branchStage.input(IS_RVC) && branchStage.input(PC)(1)) ? U(1) | U(0))
else
U(0))
historyWrite.data.history := branchContext.line.history + (moreJump ? S(-1) | S(1))
val sat = (branchContext.line.history === (moreJump ? S(branchContext.line.history.minValue) | S(branchContext.line.history.maxValue)))
historyWrite.valid := !branchContext.hazard && branchStage.arbitration.isFiring && branchStage.input(BRANCH_CTRL) === BranchCtrlEnum.B && !sat
})
val imm = IMM(decode.input(INSTRUCTION))
val conditionalBranchPrediction = prediction match {
case STATIC => imm.b_sext.msb
case DYNAMIC => dynamic.decodeContextPrediction
}
decodePrediction.cmd.hadBranch := decode.input(BRANCH_CTRL) === BranchCtrlEnum.JAL || (decode.input(BRANCH_CTRL) === BranchCtrlEnum.B && conditionalBranchPrediction)
val noPredictionOnMissaligned = (!pipeline(RVC_GEN)) generate new Area{
val missaligned = decode.input(BRANCH_CTRL).mux(
BranchCtrlEnum.JAL -> imm.j_sext(1),
default -> imm.b_sext(1)
)
decodePrediction.cmd.hadBranch clearWhen(missaligned)
}
//TODO no more fireing depedancies
predictionJumpInterface.valid := decode.arbitration.isValid && decodePrediction.cmd.hadBranch //TODO OH Doublon de priorité
predictionJumpInterface.payload := decode.input(PC) + ((decode.input(BRANCH_CTRL) === BranchCtrlEnum.JAL) ? imm.j_sext | imm.b_sext).asUInt
if(relaxPredictorAddress) KeepAttribute(predictionJumpInterface.payload)
when(predictionJumpInterface.valid && decode.arbitration.isFiring){
flushIt()
}
}
case DYNAMIC_TARGET => new Area{
// assert(!compressedGen || cmdToRspStageCount == 1, "Can't combine DYNAMIC_TARGET and RVC as it could stop the instruction fetch mid-air")
case class BranchPredictorLine() extends Bundle{
val source = Bits(30 - historyRamSizeLog2 bits)
val branchWish = UInt(2 bits)
val target = UInt(32 bits)
val unaligned = ifGen(compressedGen)(Bool)
}
val history = Mem(BranchPredictorLine(), 1 << historyRamSizeLog2)
val historyWrite = history.writePort
//Avoid write to read hazard
val historyWriteLast = RegNextWhen(historyWrite, iBusRsp.stages(0).output.ready)
val hazard = historyWriteLast.valid && historyWriteLast.address === (iBusRsp.stages(1).input.payload >> 2).resized
val line = history.readSync((iBusRsp.stages(0).input.payload >> 2).resized, iBusRsp.stages(0).output.ready)
val hit = line.source === (iBusRsp.stages(1).input.payload.asBits >> 2 + historyRamSizeLog2)
fetchPc.predictionPcLoad.valid := line.branchWish.msb && hit && !hazard && iBusRsp.stages(1).input.valid
fetchPc.predictionPcLoad.payload := line.target
case class PredictionResult() extends Bundle{
val hazard = Bool
val hit = Bool
val line = BranchPredictorLine()
}
val fetchContext = PredictionResult()
fetchContext.hazard := hazard
fetchContext.hit := hit
fetchContext.line := line
val (decompressorContext, injectorContext) = stage1ToInjectorPipe(fetchContext)
if(compressedGen) {
//prediction hit on the right instruction into words
decompressorContext.hit clearWhen(decompressorContext.line.unaligned && (decompressor.bufferValid || (decompressor.isRvc && !decompressor.input.pc(1))))
decodePc.predictionPcLoad.valid := injectorContext.line.branchWish.msb && injectorContext.hit && !injectorContext.hazard && injector.decodeInput.fire
decodePc.predictionPcLoad.payload := injectorContext.line.target
when(decompressorContext.line.branchWish.msb && decompressorContext.hit && !decompressorContext.hazard && decompressor.output.fire){
decompressor.bufferValid := False
decompressor.input.ready := True
}
}
object PREDICTION_CONTEXT extends Stageable(PredictionResult())
pipeline.decode.insert(PREDICTION_CONTEXT) := injectorContext
val branchStage = fetchPrediction.stage
val branchContext = branchStage.input(PREDICTION_CONTEXT)
fetchPrediction.cmd.hadBranch := branchContext.hit && !branchContext.hazard && branchContext.line.branchWish.msb
fetchPrediction.cmd.targetPc := branchContext.line.target
historyWrite.valid := False
historyWrite.address := fetchPrediction.rsp.sourceLastWord(2, historyRamSizeLog2 bits)
historyWrite.data.source := fetchPrediction.rsp.sourceLastWord.asBits >> 2 + historyRamSizeLog2
historyWrite.data.target := fetchPrediction.rsp.finalPc
if(compressedGen) historyWrite.data.unaligned := !fetchPrediction.stage.input(PC)(1) ^ fetchPrediction.stage.input(IS_RVC)
when(fetchPrediction.rsp.wasRight) {
historyWrite.valid := branchContext.hit
historyWrite.data.branchWish := branchContext.line.branchWish + (branchContext.line.branchWish === 2).asUInt - (branchContext.line.branchWish === 1).asUInt
} otherwise {
when(branchContext.hit) {
historyWrite.valid := True
historyWrite.data.branchWish := branchContext.line.branchWish - (branchContext.line.branchWish.msb).asUInt + (!branchContext.line.branchWish.msb).asUInt
} otherwise {
historyWrite.valid := True
historyWrite.data.branchWish := "10"
}
}
historyWrite.valid clearWhen(branchContext.hazard || !branchStage.arbitration.isFiring)
val predictionFailure = ifGen(compressedGen)(new Area{
val predictionBranch = decompressorContext.hit && !decompressorContext.hazard && decompressorContext.line.branchWish(1)
val unalignedWordIssue = decompressor.bufferFill && decompressor.input.rsp.inst(17 downto 16) === 3 && predictionBranch
val decompressorFailure = RegInit(False) setWhen(unalignedWordIssue) clearWhen(fetcherflushIt)
val injectorFailure = Delay(decompressorFailure, cycleCount=if(injectorStage) 1 else 0, when=injector.decodeInput.ready)
val bypassFailure = if(!injectorStage) False else decompressorFailure && !injector.decodeInput.valid
dynamicTargetFailureCorrection.valid := False
dynamicTargetFailureCorrection.payload := decode.input(PC)
when(injectorFailure || bypassFailure){
historyWrite.valid := True
historyWrite.address := (decode.input(PC) >> 2).resized
historyWrite.data.branchWish := 0
decode.arbitration.isValid := False
decode.arbitration.flushNext := True
dynamicTargetFailureCorrection.valid := True
}
})
}
}
def stageXToIBusRsp[T <: Data](stage : Any, input : T): (T) ={
iBusRsp.stages.dropWhile(_ != stage).tail.foldLeft(input)((data,stage) => RegNextWhen(data, stage.output.ready))
}
}
}