Start implementing new prefetcher unit

This commit is contained in:
Florian Zaruba 2017-05-13 21:45:14 +02:00
parent dc823ae54a
commit 8332c41ddb
9 changed files with 313 additions and 418 deletions

View file

@ -91,6 +91,8 @@ module ariane
logic [63:0] pc_pcgen_if;
logic set_pc_pcgen_if;
logic is_branch_pcgen_if;
logic if_ready_if_pcgen;
logic pc_valid_pcgen_if;
// --------------
// PCGEN <-> EX
// --------------
@ -108,7 +110,6 @@ module ariane
logic instr_valid_if_id;
logic [31:0] instr_rdata_if_id;
logic decode_ack_id_if;
logic illegal_c_insn_if_id;
logic is_compressed_if_id;
logic illegal_c_insn_id_if;
logic [63:0] pc_id_if_id;
@ -218,11 +219,12 @@ module ariane
// NPC Generation
// --------------
pcgen pcgen_i (
.fetch_enable_i ( fetch_enable ),
.flush_i ( flush ),
.pc_if_i ( pc_if ),
.if_ready_i ( ~if_ready_if_pcgen ),
.resolved_branch_i ( resolved_branch ),
.pc_if_o ( pc_pcgen_if ),
.set_pc_o ( set_pc_pcgen_if ),
.pc_if_valid_o ( pc_valid_pcgen_if ),
.is_branch_o ( is_branch_pcgen_if ),
.boot_addr_i ( boot_addr_i ),
.epc_i ( epc_commit_pcgen ),
@ -235,11 +237,9 @@ module ariane
// ---------
if_stage if_stage_i (
.flush_i ( flush_ctrl_if ),
.req_i ( fetch_enable ),
.if_busy_o ( ), // ?
.pc_if_valid_i ( pc_valid_pcgen_if ),
.if_busy_o ( if_ready_if_pcgen ),
.id_ready_i ( ready_id_if ),
.halt_if_i ( halt_if ),
.set_pc_i ( set_pc_pcgen_if ),
.is_branch_i ( is_branch_pcgen_if ),
.branch_predict_o ( branch_predict_if_id ),
.fetch_addr_i ( pc_pcgen_if ),
@ -252,9 +252,6 @@ module ariane
.instr_valid_id_o ( instr_valid_if_id ),
.instr_rdata_id_o ( instr_rdata_if_id ),
.is_compressed_id_o ( is_compressed_if_id ),
.illegal_c_insn_id_o ( illegal_c_insn_if_id ),
.pc_if_o ( pc_if ),
.pc_id_o ( pc_id_if_id ),
.ex_o ( exception_if_id ),
.*
@ -275,7 +272,6 @@ module ariane
.instruction_i ( instr_rdata_if_id ),
.instruction_valid_i ( instr_valid_if_id ),
.decoded_instr_ack_o ( decode_ack_id_if ),
.is_compressed_i ( is_compressed_if_id ),
.pc_if_i ( pc_id_if_id ), // PC from if
.ex_if_i ( exception_if_id ), // exception from if
.ready_o ( ready_id_if ),

View file

@ -67,11 +67,19 @@ module branch_engine (
resolved_branch_o.valid = valid_i;
resolved_branch_o.is_mispredict = 1'b0;
// calculate next PC, depending on whether the instruction is compressed or not this may be different
next_pc = pc_i + ((is_compressed_instr_i) ? 64'h2 : 64'h4);
next_pc = pc_i + ((is_compressed_instr_i) ? 64'h2 : 64'h4);
// calculate target address simple 64 bit addition
target_address = $signed(operand_c_i) + $signed(imm_i);
// save pc
resolved_branch_o.pc = pc_i;
target_address = $signed(operand_c_i) + $signed(imm_i);
// save PC - we need this to get the target row in the branch target buffer
// we play this trick with the branch instruction which wraps a byte boundary:
// |---------- Place the prediction on this PC
// \/
// ____________________________________________________
// |branch [15:0] | branch[31:16] | compressed 1[15:0] |
// |____________________________________________________
// This will relief the prefetcher to re-fetch partially fetched unaligned branch instructions e.g.:
// we don't have a back arch between prefetcher and decoder/instruction FIFO.
resolved_branch_o.pc = (is_compressed_instr_i || pc_i[1] == 1'b0) ? pc_i : (pc_i[63:2] + 64'h4);
// write target address which goes to pc gen
resolved_branch_o.target_address = (comparison_result) ? target_address : next_pc;
resolved_branch_o.is_taken = comparison_result;
@ -81,7 +89,7 @@ module branch_engine (
if (target_address[0] == 1'b0) begin
// TODO in case of branch which is not taken it is not necessary to check for the address
if ( target_address != branch_predict_i.predict_address_i // we mis-predicted the address of the branch
|| branch_predict_i.predict_taken_i != comparison_result // we mis-predicted the outcome of the branch
|| branch_predict_i.predict_taken_i != comparison_result // we mis-predicted the outcome of the branch
|| branch_predict_i.valid == 1'b0 // this means branch-prediction thought it was no branch but in reality it was one
) begin
resolved_branch_o.is_mispredict = 1'b1;

View file

@ -59,7 +59,7 @@ module btb #(
assign predict_taken_o = btb_q[$unsigned(index)].saturation_counter[BITS_SATURATION_COUNTER-1];
assign branch_target_address_o = btb_q[$unsigned(index)].target_address;
// update on a miss-predict
// update on a mis-predict
always_comb begin : update_branchpredict
btb_n = btb_q;
saturation_counter = btb_q[$unsigned(update_pc)].saturation_counter;

View file

@ -26,175 +26,233 @@ import ariane_pkg::*;
// clear_i clears the FIFO for the following cycle.
module fetch_fifo
(
input logic clk,
input logic rst_n,
input logic clk_i,
input logic rst_ni,
// control signals
input logic clear_i, // clears the contents of the fifo
input logic clear_i, // clears the contents of the fifo
// input port
input logic [63:0] in_addr_i,
input logic [31:0] in_rdata_i,
input logic in_valid_i,
output logic in_ready_o,
// branch prediction at in_addr_i address, as this is an address and not PC it can be the case
// that we have two compressed instruction (or one compressed instruction and one unaligned instruction) so we need
// keep two prediction inputs: [c1|c0] <- prediction for c1 and c0
input branchpredict_sbe branch_predict_i,
input logic [63:0] in_addr_i,
input logic [31:0] in_rdata_i,
input logic in_valid_i,
output logic in_ready_o,
// output port
output logic [63:0] out_addr_o,
output logic [31:0] out_rdata_o,
output logic out_valid_o,
input logic out_ready_i
output branchpredict_sbe [1:0] branch_predict_o,
output logic [63:0] out_addr_o,
output logic [31:0] out_rdata_o,
output logic out_valid_o,
input logic out_ready_i
);
localparam DEPTH = 4; // must be 3 or greater
/* verilator lint_off LITENDIAN */
// index 0 is used for output
logic [0:DEPTH-1] [63:0] addr_n, addr_int, addr_Q;
logic [0:DEPTH-1] [31:0] rdata_n, rdata_int, rdata_Q;
logic [0:DEPTH-1] valid_n, valid_int, valid_Q;
typedef struct packed {
branchpredict_sbe branch_predict;
logic [63:0] address;
logic [31:0] instruction;
} fetch_entry;
// input registers - bounding the path from memory
branchpredict_sbe branch_predict_n, branch_predict_q;
logic [63:0] in_addr_n, in_addr_q;
logic [31:0] in_rdata_n, in_rdata_q;
logic in_valid_n, in_valid_q;
logic [63:0] addr_next;
logic [31:0] rdata, rdata_unaligned;
logic valid, valid_unaligned;
fetch_entry mem_n[DEPTH-1:0], mem_q[DEPTH-1:0];
logic [$clog2(DEPTH)-1:0] read_pointer_n, read_pointer_q;
logic [$clog2(DEPTH)-1:0] write_pointer_n, write_pointer_q;
int unsigned status_cnt_n, status_cnt_q; // this integer will be truncated by the synthesis tool
logic aligned_is_compressed, unaligned_is_compressed;
logic aligned_is_compressed_st, unaligned_is_compressed_st;
/* lint_on */
// status signals
logic full, empty;
// the last instruction was unaligned
logic unaligned_n, unaligned_q;
// save the unaligned part of the instruction to this ff
logic [15:0] unaligned_instr_n, unaligned_instr_q;
// save the address of the unaligned instruction
logic [63:0] unaligned_address_n, unaligned_address_q;
//----------------------------------------------------------------------------
// output port
//----------------------------------------------------------------------------
assign rdata = (valid_Q[0]) ? rdata_Q[0] : in_rdata_i;
assign valid = valid_Q[0] || in_valid_i;
// we always need two empty places
// as it could happen that we get two compressed instructions/cycle
assign full = (status_cnt_q == DEPTH - 2);
assign empty = (status_cnt_q == 0);
assign out_valid_o = ~empty;
assign in_ready_o = ~full;
assign rdata_unaligned = (valid_Q[1]) ? {rdata_Q[1][15:0], rdata[31:16]} : {in_rdata_i[15:0], rdata[31:16]};
// it is implied that rdata_valid_Q[0] is set
assign valid_unaligned = (valid_Q[1] || (valid_Q[0] && in_valid_i));
// Output assignments
assign branch_predict_o = mem_q[read_pointer_q].branch_predict;
assign out_addr_o = mem_q[read_pointer_q].address;
assign out_rdata_o = mem_q[read_pointer_q].instruction;
assign unaligned_is_compressed = rdata[17:16] != 2'b11;
assign aligned_is_compressed = rdata[1:0] != 2'b11;
assign unaligned_is_compressed_st = rdata_Q[0][17:16] != 2'b11;
assign aligned_is_compressed_st = rdata_Q[0][1:0] != 2'b11;
//----------------------------------------------------------------------------
// instruction aligner (if unaligned)
//----------------------------------------------------------------------------
// ----------------
// Input Registers
// ----------------
always_comb begin
// serve the aligned case even though the output address is unaligned when
// the next instruction will be from a hardware loop target
// in this case the current instruction is already prealigned in element 0
if (out_addr_o[1]) begin
// unaligned case
out_rdata_o = rdata_unaligned;
if (unaligned_is_compressed)
out_valid_o = valid;
else
out_valid_o = valid_unaligned;
end else begin
// aligned case
out_rdata_o = rdata;
out_valid_o = valid;
end
end
assign out_addr_o = (valid_Q[0]) ? addr_Q[0] : in_addr_i;
//----------------------------------------------------------------------------
// input port
//----------------------------------------------------------------------------
// we accept data as long as our fifo is not full
// we don't care about clear here as the data will be received one cycle
// later anyway
assign in_ready_o = ~valid_Q[DEPTH-2];
//----------------------------------------------------------------------------
// FIFO management
//----------------------------------------------------------------------------
always_comb begin
addr_int = addr_Q;
rdata_int = rdata_Q;
valid_int = valid_Q;
if (in_valid_i) begin
for (int j = 0; j < DEPTH; j++) begin
if (~valid_Q[j]) begin
addr_int[j] = in_addr_i;
rdata_int[j] = in_rdata_i;
valid_int[j] = 1'b1;
break;
end
end
// if we are not ready latch the values
in_addr_n = in_addr_q;
in_rdata_n = in_rdata_q;
in_valid_n = in_rdata_q;
branch_predict_n = branch_predict_q;
// if we are ready to accept new data - do so!
if (out_valid_o) begin
in_addr_n = in_addr_i;
in_rdata_n = in_rdata_i;
in_valid_n = in_valid_i;
branch_predict_n = branch_predict_i;
end
// flush the input registers
if (clear_i) begin
in_valid_n = 1'b0;
end
end
assign addr_next = {addr_int[0][63:2], 2'b00} + 64'h4;
// --------------
// FIFO Management
// --------------
always_comb begin : output_port
// counter
automatic int status_cnt = status_cnt_q;
automatic int write_pointer = write_pointer_q;
// move everything by one step
always_comb begin
addr_n = addr_int;
rdata_n = rdata_int;
valid_n = valid_int;
write_pointer_n = write_pointer_q;
read_pointer_n = read_pointer_q;
mem_n = mem_q;
unaligned_n = unaligned_q;
unaligned_instr_n = unaligned_instr_q;
unaligned_address_n = unaligned_address_q;
// ---------------------------------
// Input port & Instruction Aligner
// ---------------------------------
if (in_valid_i && !unaligned_q) begin
// we got a valid instruction so we can satisfy the unaligned instruction
unaligned_n = 1'b0;
// check if the instruction is compressed
if(in_rdata_i[1:0] != 2'b11) begin
// it is compressed
mem_n[write_pointer_q].branch_predict = branch_predict_q;
mem_n[write_pointer_q].address = in_addr_q;
mem_n[write_pointer_q].instruction = in_rdata_q[15:0];
if (out_ready_i && out_valid_o) begin
if (addr_int[0][1]) begin
// unaligned case
if (unaligned_is_compressed) begin
addr_n[0] = {addr_next[63:2], 2'b00};
status_cnt++;
write_pointer++;
// is the second instruction also compressed, like:
// _____________________________________________
// | compressed 2 [31:16] | compressed 1[15:0] |
// |____________________________________________
if (in_rdata_i[17:16] != 2'b11) begin
mem_n[write_pointer_q + 1].branch_predict = branch_predict_q;
mem_n[write_pointer_q + 1].address = {in_addr_q[63:2], 2'b10};
mem_n[write_pointer_q + 1].instruction = in_rdata_q[31:16];
status_cnt++;
write_pointer++;
// or is it an unaligned 32 bit instruction like
// ____________________________________________________
// |instr [15:0] | instr [31:16] | compressed 1[15:0] |
// |____________________________________________________
end else begin
addr_n[0] = {addr_next[63:2], 2'b10};
// we've got an unaligned 32 bit instruction
// save the lower 16 bit
unaligned_instr_n = in_rdata_q[31:16];
// and that it was unaligned
unaligned_n = 1'b1;
// save the address as well
unaligned_address_n = {in_addr_q[63:2], 2'b10};
// this does not consume space in the FIFO
end
// shift everything on ene step
for (int i = 0; i < DEPTH - 1; i++)
rdata_n[i] = rdata_int[i + 1];
rdata_n[DEPTH - 1] = 32'b0;
valid_n = {valid_int[1:DEPTH-1], 1'b0};
end else begin
if (aligned_is_compressed) begin
// just increase address, do not move to next entry in FIFO
addr_n[0] = {addr_int[0][63:2], 2'b10};
end else begin
// move to next entry in FIFO
addr_n[0] = {addr_next[63:2], 2'b00};
// shift entry
for (int i = 0; i < DEPTH - 1; i++)
rdata_n[i] = rdata_int[i + 1];
rdata_n[DEPTH - 1] = 32'b0;
valid_n = {valid_int[1:DEPTH-1], 1'b0};
end
// this is a full 32 bit instruction like
// _______________________
// | instruction [31:0] |
// |______________________
mem_n[write_pointer_q].branch_predict = branch_predict_q;
mem_n[write_pointer_q].address = in_addr_q;
mem_n[write_pointer_q].instruction = in_rdata_q;
status_cnt++;
write_pointer++;
end
end
// on a clear signal from outside we invalidate the content of the FIFO
// completely and start from an empty state
// we have an outstanding unaligned instruction
if (in_valid_i && unaligned_q) begin
mem_n[write_pointer_q].branch_predict = branch_predict_q;
mem_n[write_pointer_q].address = unaligned_address_q;
mem_n[write_pointer_q].instruction = {in_rdata_q[15:0], unaligned_instr_q};
status_cnt++;
write_pointer++;
// whats up with the other upper 16 bit of this instruction
// is the second instruction also compressed, like:
// _____________________________________________
// | compressed 2 [31:16] | compressed 1[15:0] |
// |____________________________________________
if (in_rdata_i[17:16] != 2'b11) begin
mem_n[write_pointer_q + 1].branch_predict = branch_predict_q;
mem_n[write_pointer_q + 1].address = {in_addr_q[63:2], 2'b10};
mem_n[write_pointer_q + 1].instruction = in_rdata_q[31:16];
status_cnt++;
write_pointer++;
// unaligned access served
unaligned_n = 1'b0;
// or is it an unaligned 32 bit instruction like
// ____________________________________________________
// |instr [15:0] | instr [31:16] | compressed 1[15:0] |
// |____________________________________________________
end else begin
// we've got an unaligned 32 bit instruction
// save the lower 16 bit
unaligned_instr_n = in_rdata_q[31:16];
// and that it was unaligned
unaligned_n = 1'b1;
// save the address as well
unaligned_address_n = {in_addr_q[63:2], 2'b10};
// this does not consume space in the FIFO
end
end
// -------------
// Output port
// -------------
// we are ready to accept a new request if we still have two places in the queue
if (out_ready_i) begin
read_pointer_n = read_pointer_q + 1;
status_cnt--;
end
write_pointer_n = write_pointer;
status_cnt_n = status_cnt;
if (clear_i)
valid_n = '0;
status_cnt_n = '0;
end
//----------------------------------------------------------------------------
// registers
//----------------------------------------------------------------------------
always_ff @(posedge clk, negedge rst_n) begin
if(rst_n == 1'b0) begin
addr_Q <= '{default: '0};
rdata_Q <= '{default: '0};
valid_Q <= '0;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (~rst_ni) begin
status_cnt_q <= '{default: 0};
mem_q <= '{default: 0};
read_pointer_q <= '{default: 0};
write_pointer_q <= '{default: 0};
unaligned_q <= 1'b0;
unaligned_instr_q <= 16'b0;
unaligned_address_q <= 64'b0;
// input registers
in_addr_q <= 64'b0;
in_rdata_q <= 32'b0;
in_valid_q <= 1'b0;
branch_predict_q <= '{default: 0};
end else begin
addr_Q <= addr_n;
rdata_Q <= rdata_n;
valid_Q <= valid_n;
end
status_cnt_q <= status_cnt_n;
mem_q <= mem_n;
read_pointer_q <= read_pointer_n;
write_pointer_q <= write_pointer_n;
unaligned_q <= unaligned_n;
unaligned_instr_q <= unaligned_instr_n;
unaligned_address_q <= unaligned_address_n;
// input registers
in_addr_q <= in_addr_n;
in_rdata_q <= in_rdata_n;
in_valid_q <= in_rdata_n;
branch_predict_q <= branch_predict_n;
end
end
//----------------------------------------------------------------------------
// Assertions
//----------------------------------------------------------------------------
`ifndef SYNTHESIS
`ifndef VERILATOR
assert property (
@(posedge clk) (in_valid_i) |-> ((valid_Q[DEPTH-1] == 1'b0) || (clear_i == 1'b1)) );
`endif
`endif
endmodule

View file

@ -21,19 +21,19 @@ module fifo #(
parameter type dtype = logic[63:0],
parameter int unsigned DEPTH = 4
)(
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic flush_i, // flush the queue
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic flush_i, // flush the queue
// status flags
output logic full_o, // queue is full
output logic empty_o, // queue is empty
output logic full_o, // queue is full
output logic empty_o, // queue is empty
output logic single_element_o, // there is just a single element in the queue
// as long as the queue is not full we can push new data
input dtype data_i, // data to push into the queue
input logic push_i, // data is valid and can be pushed to the queue
input dtype data_i, // data to push into the queue
input logic push_i, // data is valid and can be pushed to the queue
// as long as the queue is not empty we can pop new elements
output dtype data_o, // output data
input logic pop_i // pop head from queue
output dtype data_o, // output data
input logic pop_i // pop head from queue
);
// pointer to the read and write section of the queue
logic [$clog2(DEPTH) - 1:0] read_pointer_n, read_pointer_q, write_pointer_n, write_pointer_q;
@ -44,7 +44,7 @@ module fifo #(
assign full_o = (status_cnt_q == DEPTH);
assign empty_o = (status_cnt_q == 0);
assign single_element_o = (status_cnt_q == 1);
assign single_element_o = (status_cnt_q == 1);
// read and write queue logic
always_comb begin : read_write_comb
// default assignment

View file

@ -34,7 +34,6 @@ module id_stage #(
input logic [31:0] instruction_i,
input logic instruction_valid_i,
output logic decoded_instr_ack_o,
input logic is_compressed_i,
input logic [63:0] pc_if_i,
input exception ex_if_i, // we already got an exception in IF
@ -97,6 +96,11 @@ module id_stage #(
logic issue_instr_valid_sb_iro;
logic issue_ack_iro_sb;
// ---------------------------------------------------
// Compressed Decoder <-> Decoder
// ---------------------------------------------------
logic [31:0] instruction_decompressed;
logic instructio_compressed;
// ---------------------------------------------------
// Decoder (DC) <-> Scoreboard (SB)
// ---------------------------------------------------
scoreboard_entry decoded_instr_dc_sb;
@ -129,10 +133,22 @@ module id_stage #(
// the case that we have an unresolved branch which is cleared in that cycle (resolved_branch_i.valid == 1)
assign ready_o = ~full && (~unresolved_branch_q || resolved_branch_i.valid);
// compressed instruction decoding, or more precisely compressed instruction
// expander
//
// since it does not matter where we decompress instructions, we do it here
// to ease timing closure
compressed_decoder compressed_decoder_i (
.instr_i ( instruction_i ),
.instr_o ( instruction_decompressed ),
.is_compressed_o ( instr_compressed ),
.illegal_instr_o ( ) // TODO
);
decoder decoder_i (
.pc_i ( pc_if_i ),
.is_compressed_i ( is_compressed_i ),
.instruction_i ( instruction_i ),
.is_compressed_i ( instr_compressed ),
.instruction_i ( instruction_decompressed ),
.ex_i ( ex_if_i ),
.instruction_o ( decoded_instr_dc_sb ),
.is_control_flow_instr_o ( is_control_flow_instr ),

View file

@ -32,13 +32,11 @@ module if_stage (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic flush_i,
input logic req_i, // request new instructions
output logic if_busy_o, // is the IF stage busy fetching instructions?
input logic id_ready_i,
input logic halt_if_i, // pipeline stall
// ctrl flow instruction in
input logic [63:0] fetch_addr_i,
input logic set_pc_i, // set new PC
input logic pc_if_valid_i,
input logic is_branch_i, // the new PC was a branch e.g.: branch or jump
// branchpredict out
output branchpredict_sbe branch_predict_o,
@ -52,60 +50,30 @@ module if_stage (
output logic instr_valid_id_o, // instruction in IF/ID pipeline is valid
output logic [31:0] instr_rdata_id_o, // read instruction is sampled and sent to ID stage for decoding
input logic instr_ack_i,
output logic is_compressed_id_o, // compressed decoder thinks this is a compressed instruction
output logic illegal_c_insn_id_o, // compressed decoder thinks this is an invalid instruction
output logic [63:0] pc_if_o,
output logic [63:0] pc_id_o,
output exception ex_o
);
logic if_ready, if_valid;
logic branch_req;
logic valid;
logic prefetch_busy;
logic fetch_valid;
logic fetch_ready;
logic [31:0] fetch_rdata;
logic [63:0] fetch_addr;
// branch predict registers
logic branch_valid_n, branch_valid_q;
logic [63:0] predict_address_n, predict_address_q;
logic predict_taken_n, predict_taken_q;
// offset FSM
enum logic[1:0] {WAIT, IDLE, WAIT_BRANCHED} offset_fsm_cs, offset_fsm_ns;
logic [31:0] instr_decompressed;
logic illegal_c_insn;
logic instr_compressed_int;
// compressed instruction decoding, or more precisely compressed instruction
// expander
//
// since it does not matter where we decompress instructions, we do it here
// to ease timing closure
compressed_decoder compressed_decoder_i (
.instr_i ( fetch_rdata ),
.instr_o ( instr_decompressed ),
.is_compressed_o ( instr_compressed_int ),
.illegal_instr_o ( illegal_c_insn )
);
// Pre-fetch buffer, caches a fixed number of instructions
prefetch_buffer prefetch_buffer_i (
.clk ( clk_i ),
.rst_n ( rst_ni ),
.flush_i ( flush_i ),
.req_i ( req_i ),
.branch_i ( branch_req ), // kill everything
.addr_i ( {fetch_addr_i[63:1], 1'b0} ),
.fetch_addr_i ( {fetch_addr_i[63:1], 1'b0} ),
.fetch_valid_i ( pc_if_valid_i ),
.ready_i ( fetch_ready ),
.ready_i ( instr_ack_i ),
.valid_o ( fetch_valid ),
.rdata_o ( fetch_rdata ),
.addr_o ( fetch_addr ),
.rdata_o ( instr_rdata_id_o ),
.addr_o ( pc_id_o ),
// goes to instruction memory / instruction cache
.instr_req_o ( instr_req_o ),
@ -118,136 +86,36 @@ module if_stage (
.busy_o ( prefetch_busy )
);
// offset FSM state transition logic
assign instr_valid_id_o = fetch_valid & id_ready_i;
assign if_busy_o = prefetch_busy;
always_comb begin
offset_fsm_ns = offset_fsm_cs;
fetch_ready = 1'b0;
branch_req = 1'b0;
valid = 1'b0;
// if (flush_i) begin
unique case (offset_fsm_cs)
// no valid instruction data for ID stage
// assume aligned
IDLE: begin
if (req_i) begin
branch_req = 1'b1;
offset_fsm_ns = WAIT;
end
// take care of control flow changes
if (set_pc_i) begin
valid = 1'b0;
// switch to new PC from ID stage
branch_req = 1'b1;
offset_fsm_ns = WAIT;
end
end
// serving aligned 32 bit or 16 bit instruction, we don't know yet
WAIT: begin
if (fetch_valid) begin
valid = 1'b1; // an instruction is ready for ID stage
if (req_i && if_valid) begin
fetch_ready = 1'b1;
offset_fsm_ns = WAIT;
end
end
end
default: begin
offset_fsm_ns = IDLE;
end
endcase
// take care of control flow changes
if (set_pc_i) begin
valid = 1'b0;
// switch to new PC from PCGEN stage
branch_req = 1'b1;
offset_fsm_ns = WAIT;
end
// end
end
// -------------
// Branch Logic
// -------------
// We need to pass those registers on to ID in the case we've set
// a new branch target (or jump) and we got a valid instruction
always_comb begin
// this is the latch case we keep the values
predict_address_n = predict_address_q;
predict_taken_n = predict_taken_q;
branch_valid_n = branch_valid_q;
// a new branch target has been set by PCGEN
// save this in the register stage
if (set_pc_i && is_branch_i) begin
predict_address_n = fetch_addr_i;
// whether we took the branch or not can be seen from the set PC
// nevertheless we also need to keep branches not taken
predict_taken_n = set_pc_i;
branch_valid_n = is_branch_i;
end
if (if_valid) begin
branch_valid_n = is_branch_i;
end
end
// --------------------------------------------------------------
// IF-ID pipeline registers, frozen when the ID stage is stalled
// --------------------------------------------------------------
always_ff @(posedge clk_i, negedge rst_ni) begin : IF_ID_PIPE_REGISTERS
if (~rst_ni) begin
// offset FSM state
offset_fsm_cs <= IDLE;
instr_valid_id_o <= 1'b0;
instr_rdata_id_o <= '0;
illegal_c_insn_id_o <= 1'b0;
is_compressed_id_o <= 1'b0;
pc_id_o <= '0;
ex_o <= '{default: 0};
branch_valid_q <= 1'b0;
predict_address_q <= 64'b0;
predict_taken_q <= 1'b0;
end
else
begin
offset_fsm_cs <= offset_fsm_ns;
predict_address_q <= predict_address_n;
predict_taken_q <= predict_taken_n;
branch_valid_q <= branch_valid_n;
if (if_valid) begin
// in case of a flush simply say that the next instruction
// is not valid anymore
if (flush_i) begin
instr_valid_id_o <= 1'b0;
end else
instr_valid_id_o <= 1'b1;
instr_rdata_id_o <= instr_decompressed;
illegal_c_insn_id_o <= illegal_c_insn;
is_compressed_id_o <= instr_compressed_int;
pc_id_o <= pc_if_o;
ex_o.cause <= 64'b0; // TODO: Output exception
ex_o.tval <= 64'b0; // TODO: Output exception
ex_o.valid <= 1'b0; // TODO: Output exception
// id stage acknowledged
end else if (instr_ack_i) begin
instr_valid_id_o <= 1'b0;
end
else begin
predict_address_q <= predict_address_n;
predict_taken_q <= predict_taken_n;
branch_valid_q <= branch_valid_n;
ex_o.cause <= 64'b0; // TODO: Output exception
ex_o.tval <= 64'b0; // TODO: Output exception
ex_o.valid <= 1'b0; // TODO: Output exception
end
end
// Assignments
assign pc_if_o = fetch_addr;
assign if_ready = valid & id_ready_i;
assign if_valid = (~halt_if_i) & if_ready;
assign if_busy_o = prefetch_busy;
assign branch_predict_o = {predict_address_q, predict_taken_q, branch_valid_q};
//-------------
// Assertions

View file

@ -23,13 +23,14 @@ module pcgen (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic fetch_enable_i,
input logic flush_i,
input logic [63:0] pc_if_i,
input branchpredict resolved_branch_i, // from controller signaling a branchpredict -> update BTB
input logic if_ready_i,
input branchpredict resolved_branch_i, // from controller signaling a branchpredict -> update BTB
// to IF
output logic [63:0] pc_if_o, // new PC
output logic set_pc_o, // request the PC to be set to pc_if_o
output logic is_branch_o, // to check if we branchpredicted we need to save whether this was a branch or not <- LOL
output logic pc_if_valid_o, // the PC is valid
output logic is_branch_o,
// global input
input logic [63:0] boot_addr_i,
// CSR input
@ -43,44 +44,25 @@ module pcgen (
logic [63:0] npc_n, npc_q;
logic is_branch;
logic is_branch_n, is_branch_q;
logic set_pc_n, set_pc_q;
// pc which is used to look up the prediction in the BTB
logic [63:0] predict_pc;
assign pc_if_o = npc_q;
assign set_pc_o = set_pc_q;
assign is_branch_o = is_branch_q;
// Predict PC source select
// the PC which we use for lookup in the BTB can come from two sources:
// 1. PC from if stage plus + 4
// 2. or PC which we just predicted + 4
always_comb begin : pc_btb_lookup
// Ad 2: From PC of previous cycle (which is now in IF)
// predict_pc = npc_q;
// // Ad 1:
// // in the previous cycle we set the PC to npc_q
// // calculate the plus one version
// end else begin
predict_pc = {pc_if_i[62:2], 2'b0} + 64'h4;
// end
end
btb #(
.NR_ENTRIES(64),
.BITS_SATURATION_COUNTER(2)
)
btb_i
(
.vpc_i ( predict_pc ),
// Use the PC from last cycle to perform branch lookup
.vpc_i ( npc_q ),
.branchpredict_i ( resolved_branch_i ),
.is_branch_o ( is_branch ),
.predict_taken_o ( predict_taken ),
.branch_target_address_o ( branch_target_address ),
.*
);
// TODO: on flush output exception or other things but do not take branch
// -------------------
// Next PC
// -------------------
@ -92,23 +74,23 @@ module pcgen (
// 5. Boot address
always_comb begin : npc_select
// default assignment
npc_n = npc_q;
set_pc_n = 1'b0;
is_branch_n = is_branch;
// default is a consecutive PC
if (if_ready_i && fetch_enable_i)
npc_n = {npc_q[62:2], 2'b0} + 64'h4;
else // or keep the PC stable if IF is not ready
npc_n = npc_q;
pc_if_valid_o = 1'b0;
is_branch_n = is_branch;
// we already set the PC a cycle earlier
if (set_pc_q)
is_branch_n = 1'b0;
// 4. Predict taken
if (is_branch && predict_taken && ~set_pc_q) begin
set_pc_n = 1'b1;
npc_n = branch_target_address;
if (is_branch && predict_taken) begin
npc_n = branch_target_address;
end
// 1.Debug
// 3. Control flow change request
if (resolved_branch_i.is_mispredict) begin
set_pc_n = 1'b1;
// we already got the correct target address
npc_n = resolved_branch_i.target_address;
end
@ -120,7 +102,10 @@ module pcgen (
// 3. Return from exception
// fetch enable
if (fetch_enable_i) begin
pc_if_valid_o = 1'b1;
end
end
// -------------------
// Sequential Process
@ -128,12 +113,10 @@ module pcgen (
// PCGEN -> IF Register
always_ff @(posedge clk_i or negedge rst_ni) begin
if(~rst_ni) begin
npc_q <= 64'b0;
set_pc_q <= 1'b0;
npc_q <= boot_addr_i;
is_branch_q <= 1'b0;
end else begin
npc_q <= npc_n;
set_pc_q <= set_pc_n;
is_branch_q <= is_branch_n;
end
end

View file

@ -28,10 +28,8 @@ module prefetch_buffer
input logic rst_n,
input logic flush_i,
input logic req_i,
input logic branch_i,
input logic [63:0] addr_i,
input logic [63:0] fetch_addr_i,
input logic fetch_valid_i,
input logic ready_i,
output logic valid_o,
@ -51,9 +49,8 @@ module prefetch_buffer
enum logic [1:0] {IDLE, WAIT_GNT, WAIT_RVALID, WAIT_ABORTED } CS, NS;
logic [63:0] instr_addr_q, fetch_addr;
logic addr_valid;
logic [63:0] instr_addr_q;
logic fifo_valid;
logic fifo_ready;
logic fifo_clear;
@ -61,64 +58,50 @@ module prefetch_buffer
//---------------------------------
// Prefetch buffer status
//---------------------------------
assign busy_o = (CS != IDLE) || instr_req_o;
// we are busy if we are either waiting for a grant
// or if the fifo is full
assign busy_o = (CS inside {WAIT_GNT, WAIT_ABORTED}) && fifo_ready;
//---------------------------------
// Fetch FIFO
// consumes addresses and rdata
//---------------------------------
fetch_fifo fifo_i (
.clk ( clk ),
.rst_n ( rst_n ),
.clk_i ( clk ),
.rst_ni ( rst_n ),
.clear_i ( fifo_clear ),
.clear_i ( flush_i ),
.in_addr_i ( instr_addr_q ),
.in_rdata_i ( instr_rdata_i ),
.in_valid_i ( fifo_valid ),
.in_ready_o ( fifo_ready ),
.out_valid_o ( valid_o ),
.out_ready_i ( ready_i ),
.out_rdata_o ( rdata_o ),
.out_addr_o ( addr_o )
);
//---------------
// Fetch address
//---------------
assign fetch_addr = {instr_addr_q[63:2], 2'b00} + 64'd4;
assign fifo_clear = branch_i || flush_i;
//-------------------------
//--------------------------------------------------
// Instruction fetch FSM
// deals with instruction memory / instruction cache
//-------------------------
//--------------------------------------------------
always_comb
begin
instr_req_o = 1'b0;
instr_addr_o = fetch_addr;
instr_addr_o = fetch_addr_i;
fifo_valid = 1'b0;
addr_valid = 1'b0;
NS = CS;
unique case(CS)
// default state, not waiting for requested data
IDLE:
begin
instr_addr_o = fetch_addr;
IDLE: begin
instr_addr_o = fetch_addr_i;
instr_req_o = 1'b0;
if (branch_i)
instr_addr_o = addr_i;
if (req_i & (fifo_ready | branch_i )) begin
if (fifo_ready && fetch_valid_i) begin
instr_req_o = 1'b1;
addr_valid = 1'b1;
@ -132,16 +115,10 @@ module prefetch_buffer
end // case: IDLE
// we sent a request but did not yet get a grant
WAIT_GNT:
begin
WAIT_GNT: begin
instr_addr_o = instr_addr_q;
instr_req_o = 1'b1;
if (branch_i) begin
instr_addr_o = addr_i;
addr_valid = 1'b1;
end
if(instr_gnt_i)
NS = WAIT_RVALID;
else
@ -150,16 +127,12 @@ module prefetch_buffer
// we wait for rvalid, after that we are ready to serve a new request
WAIT_RVALID: begin
instr_addr_o = fetch_addr;
instr_addr_o = fetch_addr_i;
if (branch_i)
instr_addr_o = addr_i;
if (req_i & (fifo_ready | branch_i)) begin
if (fifo_ready) begin
// prepare for next request
if (instr_rvalid_i) begin
if (fifo_ready && fetch_valid_i) begin
instr_req_o = 1'b1;
fifo_valid = 1'b1;
addr_valid = 1'b1;
@ -173,14 +146,12 @@ module prefetch_buffer
end else begin
// we are requested to abort our current request
// we didn't get an rvalid yet, so wait for it
if (branch_i) begin
addr_valid = 1'b1;
NS = WAIT_ABORTED;
if (flush_i) begin
NS = WAIT_ABORTED;
end
end
end else begin
// just wait for rvalid and go back to IDLE, no new request
if (instr_rvalid_i) begin
fifo_valid = 1'b1;
NS = IDLE;
@ -194,11 +165,6 @@ module prefetch_buffer
WAIT_ABORTED: begin
instr_addr_o = instr_addr_q;
if (branch_i) begin
instr_addr_o = addr_i;
addr_valid = 1'b1;
end
if (instr_rvalid_i) begin
instr_req_o = 1'b1;
// no need to send address, already done in WAIT_RVALID