Optimize FPGA memories (#989)

This commit is contained in:
sébastien jacq 2022-11-08 23:15:02 +01:00 committed by GitHub
parent ec61b89df6
commit c5947082c4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 796 additions and 31 deletions

3
.gitmodules vendored
View file

@ -1,9 +1,6 @@
[submodule "corev_apu/axi_mem_if"]
path = corev_apu/axi_mem_if
url = https://github.com/pulp-platform/axi_mem_if.git
[submodule "corev_apu/fpga-support"]
path = corev_apu/fpga-support
url = https://github.com/pulp-platform/fpga-support.git
[submodule "common/submodules/common_cells"]
path = common/submodules/common_cells
url = https://github.com/pulp-platform/common_cells.git

View file

@ -163,7 +163,7 @@ sources:
- corev_apu/axi/src/axi_mux.sv
- corev_apu/axi/src/axi_demux.sv
- corev_apu/axi/src/axi_xbar.sv
- corev_apu/fpga-support/rtl/SyncSpRamBeNx64.sv
- common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv
- common/submodules/common_cells/src/sync.sv
- common/submodules/common_cells/src/popcount.sv
- common/submodules/common_cells/src/unread.sv

View file

@ -203,6 +203,7 @@ src := $(filter-out core/ariane_regfile.sv, $(wildcard core/*.sv))
corev_apu/axi/src/axi_mux.sv \
corev_apu/axi/src/axi_demux.sv \
corev_apu/axi/src/axi_xbar.sv \
common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv \
common/submodules/common_cells/src/unread.sv \
common/submodules/common_cells/src/sync.sv \
common/submodules/common_cells/src/cdc_2phase.sv \
@ -254,7 +255,7 @@ copro_src := $(addprefix $(root-dir), $(copro_src))
uart_src := $(wildcard corev_apu/fpga/src/apb_uart/src/*.vhd)
uart_src := $(addprefix $(root-dir), $(uart_src))
fpga_src := $(wildcard corev_apu/fpga/src/*.sv) $(wildcard corev_apu/fpga/src/bootrom/*.sv) $(wildcard corev_apu/fpga/src/ariane-ethernet/*.sv) corev_apu/src/tech_cells_generic/src/fpga/tc_sram_xilinx.sv common/local/util/tc_sram_xilinx_wrapper.sv
fpga_src := $(wildcard corev_apu/fpga/src/*.sv) $(wildcard corev_apu/fpga/src/bootrom/*.sv) $(wildcard corev_apu/fpga/src/ariane-ethernet/*.sv) common/local/util/tc_sram_fpga_wrapper.sv
fpga_src := $(addprefix $(root-dir), $(fpga_src))
# look for testbenches

View file

@ -0,0 +1,182 @@
// Copyright 2014 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
/**
* Inferable, Synchronous Dual-Port RAM
*
* This module is designed to work with both Xilinx and Altera tools by following the respective
* guidelines:
* - Xilinx UG901 Vivado Design Suite User Guide: Synthesis (p. 106)
* - Altera Quartus II Handbook Volume 1: Design and Synthesis (p. 768)
*
* Current Maintainers:
* - Michael Schaffner <schaffer@iis.ee.ethz.ch>
*/
// this automatically switches the behavioral description
// pragma translate_off
`define SIMULATION
// pragma translate_on
module SyncDpRam
#(
parameter ADDR_WIDTH = 10,
parameter DATA_DEPTH = 1024, // usually 2**ADDR_WIDTH, but can be lower
parameter DATA_WIDTH = 32,
parameter OUT_REGS = 0,
parameter SIM_INIT = 0 // for simulation only, will not be synthesized
// 0: no init, 1: zero init, 2: random init
// note: on verilator, 2 is not supported. define the VERILATOR macro to work around.
)(
input logic Clk_CI,
input logic Rst_RBI,
// port A
input logic CSelA_SI,
input logic WrEnA_SI,
input logic [DATA_WIDTH-1:0] WrDataA_DI,
input logic [ADDR_WIDTH-1:0] AddrA_DI,
output logic [DATA_WIDTH-1:0] RdDataA_DO,
// port B
input logic CSelB_SI,
input logic WrEnB_SI,
input logic [DATA_WIDTH-1:0] WrDataB_DI,
input logic [ADDR_WIDTH-1:0] AddrB_DI,
output logic [DATA_WIDTH-1:0] RdDataB_DO
);
////////////////////////////
// signals, localparams
////////////////////////////
logic [DATA_WIDTH-1:0] RdDataA_DN;
logic [DATA_WIDTH-1:0] RdDataA_DP;
logic [DATA_WIDTH-1:0] RdDataB_DN;
logic [DATA_WIDTH-1:0] RdDataB_DP;
logic [DATA_WIDTH-1:0] Mem_DP [DATA_DEPTH-1:0];
////////////////////////////
// XILINX/ALTERA implementation
////////////////////////////
`ifdef SIMULATION
always_ff @(posedge Clk_CI)
begin
automatic logic [DATA_WIDTH-1:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
Mem_DP[k] = val;
end
end else begin
if (CSelA_SI) begin
if (WrEnA_SI) begin
Mem_DP[AddrA_DI] <= WrDataA_DI;
end
else
begin
RdDataA_DN <= Mem_DP[AddrA_DI];
end
end
if (CSelB_SI) begin
if (WrEnB_SI) begin
Mem_DP[AddrB_DI] <= WrDataB_DI;
end
else
begin
RdDataB_DN <= Mem_DP[AddrB_DI];
end
end
end
end
`endif
////////////////////////////
// XILINX/ALTERA implementation
////////////////////////////
`ifndef SIMULATION
always_ff @(posedge Clk_CI)
begin
if (CSelA_SI) begin
if (WrEnA_SI) begin
Mem_DP[AddrA_DI] <= WrDataA_DI;
end
else
begin
RdDataA_DN <= Mem_DP[AddrA_DI];
end
end
end
always_ff @(posedge Clk_CI)
begin
if (CSelB_SI) begin
if (WrEnB_SI) begin
Mem_DP[AddrB_DI] <= WrDataB_DI;
end
else
begin
RdDataB_DN <= Mem_DP[AddrB_DI];
end
end
end
`endif
////////////////////////////
// optional output regs
////////////////////////////
// output regs
generate
if (OUT_REGS>0) begin : g_outreg
always_ff @(posedge Clk_CI or negedge Rst_RBI) begin
if(Rst_RBI == 1'b0)
begin
RdDataA_DP <= 0;
RdDataB_DP <= 0;
end
else
begin
RdDataA_DP <= RdDataA_DN;
RdDataB_DP <= RdDataB_DN;
end
end
end
endgenerate // g_outreg
// output reg bypass
generate
if (OUT_REGS==0) begin : g_oureg_byp
assign RdDataA_DP = RdDataA_DN;
assign RdDataB_DP = RdDataB_DN;
end
endgenerate// g_oureg_byp
assign RdDataA_DO = RdDataA_DP;
assign RdDataB_DO = RdDataB_DP;
////////////////////////////
// assertions
////////////////////////////
// pragma translate_off
assert property
(@(posedge Clk_CI) (longint'(2)**longint'(ADDR_WIDTH) >= longint'(DATA_DEPTH)))
else $error("depth out of bounds");
assert property
(@(posedge Clk_CI) (CSelA_SI & CSelB_SI & WrEnA_SI & WrEnB_SI) |-> (AddrA_DI != AddrB_DI))
else $error("A and B write to the same address");
// pragma translate_on
endmodule // SyncDpRam

View file

@ -0,0 +1,118 @@
// Copyright 2014 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
/**
* Inferable, Synchronous Single-Port RAM
*
* This module is designed to work with both Xilinx and Altera tools by following the respective
* guidelines:
* - Xilinx UG901 Vivado Design Suite User Guide: Synthesis (p. 106)
* - Altera Quartus II Handbook Volume 1: Design and Synthesis (p. 768)
*
* Current Maintainers:
* - Michael Schaffner <schaffer@iis.ee.ethz.ch>
*/
module SyncSpRam
#(
parameter ADDR_WIDTH = 10,
parameter DATA_DEPTH = 1024, // usually 2**ADDR_WIDTH, but can be lower
parameter DATA_WIDTH = 32,
parameter OUT_REGS = 0,
parameter SIM_INIT = 0 // for simulation only, will not be synthesized
// 0: no init, 1: zero init, 2: random init
// note: on verilator, 2 is not supported. define the VERILATOR macro to work around.
)(
input logic Clk_CI,
input logic Rst_RBI,
input logic CSel_SI,
input logic WrEn_SI,
input logic [ADDR_WIDTH-1:0] Addr_DI,
input logic [DATA_WIDTH-1:0] WrData_DI,
output logic [DATA_WIDTH-1:0] RdData_DO
);
////////////////////////////
// signals, localparams
////////////////////////////
logic [DATA_WIDTH-1:0] RdData_DN;
logic [DATA_WIDTH-1:0] RdData_DP;
logic [DATA_WIDTH-1:0] Mem_DP [DATA_DEPTH-1:0];
////////////////////////////
// XILINX/ALTERA implementation
////////////////////////////
always_ff @(posedge Clk_CI)
begin
//pragma translate_off
automatic logic [DATA_WIDTH-1:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
Mem_DP[k] = val;
end
end else
//pragma translate_on
if (CSel_SI) begin
if (WrEn_SI) begin
Mem_DP[Addr_DI] <= WrData_DI;
end
else
begin
RdData_DN <= Mem_DP[Addr_DI];
end
end
end
////////////////////////////
// optional output regs
////////////////////////////
// output regs
generate
if (OUT_REGS>0) begin : g_outreg
always_ff @(posedge Clk_CI or negedge Rst_RBI) begin
if(Rst_RBI == 1'b0)
begin
RdData_DP <= 0;
end
else
begin
RdData_DP <= RdData_DN;
end
end
end
endgenerate // g_outreg
// output reg bypass
generate
if (OUT_REGS==0) begin : g_oureg_byp
assign RdData_DP = RdData_DN;
end
endgenerate// g_oureg_byp
assign RdData_DO = RdData_DP;
////////////////////////////
// assertions
////////////////////////////
// pragma translate_off
assert property
(@(posedge Clk_CI) (longint'(2)**longint'(ADDR_WIDTH) >= longint'(DATA_DEPTH)))
else $error("depth out of bounds");
// pragma translate_on
endmodule // SyncSpRam

View file

@ -0,0 +1,168 @@
// Copyright 2014 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
/**
* Inferable, Synchronous Single-Port N x 32bit RAM with Byte-Wise Enable
*
* This module contains an implementation for either Xilinx or Altera FPGAs. To synthesize for
* Xilinx, define `FPGA_TARGET_XILINX`. To synthesize for Altera, define `FPGA_TARGET_ALTERA`. The
* implementations follow the respective guidelines:
* - Xilinx UG901 Vivado Design Suite User Guide: Synthesis (p. 106)
* - Altera Quartus II Handbook Volume 1: Design and Synthesis (p. 768)
*
* Current Maintainers:
* - Michael Schaffner <schaffer@iis.ee.ethz.ch>
*/
`ifndef FPGA_TARGET_ALTERA
`define FPGA_TARGET_XILINX
`endif
module SyncSpRamBeNx32
#(
parameter ADDR_WIDTH = 10,
parameter DATA_DEPTH = 1024, // usually 2**ADDR_WIDTH, but can be lower
parameter OUT_REGS = 0, // set to 1 to enable outregs
parameter SIM_INIT = 0 // for simulation only, will not be synthesized
// 0: no init, 1: zero init, 2: random init, 3: deadbeef init
// note: on verilator, 2 is not supported. define the VERILATOR macro to work around.
)(
input logic Clk_CI,
input logic Rst_RBI,
input logic CSel_SI,
input logic WrEn_SI,
input logic [3:0] BEn_SI,
input logic [31:0] WrData_DI,
input logic [ADDR_WIDTH-1:0] Addr_DI,
output logic [31:0] RdData_DO
);
////////////////////////////
// signals, localparams
////////////////////////////
// needs to be consistent with the Altera implemenation below
localparam DATA_BYTES = 4;
logic [DATA_BYTES*8-1:0] RdData_DN;
logic [DATA_BYTES*8-1:0] RdData_DP;
////////////////////////////
// XILINX implementation
////////////////////////////
`ifdef FPGA_TARGET_XILINX
logic [DATA_BYTES*8-1:0] Mem_DP[DATA_DEPTH-1:0];
always_ff @(posedge Clk_CI) begin
//pragma translate_off
automatic logic [31:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
else val = 32'hdeadbeef;
Mem_DP[k] = val;
end
end else
//pragma translate_on
if(CSel_SI) begin
if(WrEn_SI) begin
if(BEn_SI[0]) Mem_DP[Addr_DI][7:0] <= WrData_DI[7:0];
if(BEn_SI[1]) Mem_DP[Addr_DI][15:8] <= WrData_DI[15:8];
if(BEn_SI[2]) Mem_DP[Addr_DI][23:16] <= WrData_DI[23:16];
if(BEn_SI[3]) Mem_DP[Addr_DI][31:24] <= WrData_DI[31:24];
end
RdData_DN <= Mem_DP[Addr_DI];
end
end
`endif
////////////////////////////
// ALTERA implementation
////////////////////////////
`ifdef FPGA_TARGET_ALTERA
logic [DATA_BYTES-1:0][7:0] Mem_DP[0:DATA_DEPTH-1];
always_ff @(posedge Clk_CI) begin
//pragma translate_off
automatic logic [31:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
else val = 32'hdeadbeef;
Mem_DP[k] = val;
end
end else
//pragma translate_on
if(CSel_SI) begin
if(WrEn_SI) begin // needs to be static, otherwise Altera wont infer it
if(BEn_SI[0]) Mem_DP[Addr_DI][0] <= WrData_DI[7:0];
if(BEn_SI[1]) Mem_DP[Addr_DI][1] <= WrData_DI[15:8];
if(BEn_SI[2]) Mem_DP[Addr_DI][2] <= WrData_DI[23:16];
if(BEn_SI[3]) Mem_DP[Addr_DI][3] <= WrData_DI[31:24];
end
RdData_DN <= Mem_DP[Addr_DI];
end
end
`endif
////////////////////////////
// optional output regs
////////////////////////////
// output regs
generate
if (OUT_REGS>0) begin : g_outreg
always_ff @(posedge Clk_CI or negedge Rst_RBI) begin
if(Rst_RBI == 1'b0)
begin
RdData_DP <= 0;
end
else
begin
RdData_DP <= RdData_DN;
end
end
end
endgenerate // g_outreg
// output reg bypass
generate
if (OUT_REGS==0) begin : g_oureg_byp
assign RdData_DP = RdData_DN;
end
endgenerate// g_oureg_byp
assign RdData_DO = RdData_DP;
////////////////////////////
// assertions
////////////////////////////
// pragma translate_off
assert property
(@(posedge Clk_CI) (longint'(2)**longint'(ADDR_WIDTH) >= longint'(DATA_DEPTH)))
else $error("depth out of bounds");
// pragma translate_on
`ifndef FPGA_TARGET_XILINX
`ifndef FPGA_TARGET_ALTERA
"FPGA target not defined, define FPGA_TARGET_XILINX or FPGA_TARGET_ALTERA."
`endif
`endif
endmodule // SyncSpRamBeNx32

View file

@ -0,0 +1,176 @@
// Copyright 2014 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
/**
* Inferable, Synchronous Single-Port N x 64bit RAM with Byte-Wise Enable
*
* This module contains an implementation for either Xilinx or Altera FPGAs. To synthesize for
* Xilinx, define `FPGA_TARGET_XILINX`. To synthesize for Altera, define `FPGA_TARGET_ALTERA`. The
* implementations follow the respective guidelines:
* - Xilinx UG901 Vivado Design Suite User Guide: Synthesis (p. 106)
* - Altera Quartus II Handbook Volume 1: Design and Synthesis (p. 768)
*
* Current Maintainers:
* - Michael Schaffner <schaffer@iis.ee.ethz.ch>
*/
`ifndef FPGA_TARGET_ALTERA
`define FPGA_TARGET_XILINX
`endif
module SyncSpRamBeNx64
#(
parameter ADDR_WIDTH = 10,
parameter DATA_DEPTH = 1024, // usually 2**ADDR_WIDTH, but can be lower
parameter OUT_REGS = 0, // set to 1 to enable outregs
parameter SIM_INIT = 0 // for simulation only, will not be synthesized
// 0: no init, 1: zero init, 2: random init, 3: deadbeef init
// note: on verilator, 2 is not supported. define the VERILATOR macro to work around.
)(
input logic Clk_CI,
input logic Rst_RBI,
input logic CSel_SI,
input logic WrEn_SI,
input logic [7:0] BEn_SI,
input logic [63:0] WrData_DI,
input logic [ADDR_WIDTH-1:0] Addr_DI,
output logic [63:0] RdData_DO
);
////////////////////////////
// signals, localparams
////////////////////////////
// needs to be consistent with the Altera implemenation below
localparam DATA_BYTES = 8;
logic [DATA_BYTES*8-1:0] RdData_DN;
logic [DATA_BYTES*8-1:0] RdData_DP;
////////////////////////////
// XILINX implementation
////////////////////////////
`ifdef FPGA_TARGET_XILINX
logic [DATA_BYTES*8-1:0] Mem_DP[DATA_DEPTH-1:0];
always_ff @(posedge Clk_CI) begin
//pragma translate_off
automatic logic [63:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
else val = 64'hdeadbeefdeadbeef;
Mem_DP[k] = val;
end
end else
//pragma translate_on
if(CSel_SI) begin
if(WrEn_SI) begin
if(BEn_SI[0]) Mem_DP[Addr_DI][7:0] <= WrData_DI[7:0];
if(BEn_SI[1]) Mem_DP[Addr_DI][15:8] <= WrData_DI[15:8];
if(BEn_SI[2]) Mem_DP[Addr_DI][23:16] <= WrData_DI[23:16];
if(BEn_SI[3]) Mem_DP[Addr_DI][31:24] <= WrData_DI[31:24];
if(BEn_SI[4]) Mem_DP[Addr_DI][39:32] <= WrData_DI[39:32];
if(BEn_SI[5]) Mem_DP[Addr_DI][47:40] <= WrData_DI[47:40];
if(BEn_SI[6]) Mem_DP[Addr_DI][55:48] <= WrData_DI[55:48];
if(BEn_SI[7]) Mem_DP[Addr_DI][63:56] <= WrData_DI[63:56];
end
RdData_DN <= Mem_DP[Addr_DI];
end
end
`endif
////////////////////////////
// ALTERA implementation
////////////////////////////
`ifdef FPGA_TARGET_ALTERA
logic [DATA_BYTES-1:0][7:0] Mem_DP[0:DATA_DEPTH-1];
always_ff @(posedge Clk_CI) begin
//pragma translate_off
automatic logic [63:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
else val = 64'hdeadbeefdeadbeef;
Mem_DP[k] = val;
end
end else
//pragma translate_on
if(CSel_SI) begin
if(WrEn_SI) begin // needs to be static, otherwise Altera wont infer it
if(BEn_SI[0]) Mem_DP[Addr_DI][0] <= WrData_DI[7:0];
if(BEn_SI[1]) Mem_DP[Addr_DI][1] <= WrData_DI[15:8];
if(BEn_SI[2]) Mem_DP[Addr_DI][2] <= WrData_DI[23:16];
if(BEn_SI[3]) Mem_DP[Addr_DI][3] <= WrData_DI[31:24];
if(BEn_SI[4]) Mem_DP[Addr_DI][4] <= WrData_DI[39:32];
if(BEn_SI[5]) Mem_DP[Addr_DI][5] <= WrData_DI[47:40];
if(BEn_SI[6]) Mem_DP[Addr_DI][6] <= WrData_DI[55:48];
if(BEn_SI[7]) Mem_DP[Addr_DI][7] <= WrData_DI[63:56];
end
RdData_DN <= Mem_DP[Addr_DI];
end
end
`endif
////////////////////////////
// optional output regs
////////////////////////////
// output regs
generate
if (OUT_REGS>0) begin : g_outreg
always_ff @(posedge Clk_CI or negedge Rst_RBI) begin
if(Rst_RBI == 1'b0)
begin
RdData_DP <= 0;
end
else
begin
RdData_DP <= RdData_DN;
end
end
end
endgenerate // g_outreg
// output reg bypass
generate
if (OUT_REGS==0) begin : g_oureg_byp
assign RdData_DP = RdData_DN;
end
endgenerate// g_oureg_byp
assign RdData_DO = RdData_DP;
////////////////////////////
// assertions
////////////////////////////
// pragma translate_off
assert property
(@(posedge Clk_CI) (longint'(2)**longint'(ADDR_WIDTH) >= longint'(DATA_DEPTH)))
else $error("depth out of bounds");
// pragma translate_on
`ifndef FPGA_TARGET_XILINX
`ifndef FPGA_TARGET_ALTERA
$error("FPGA target not defined, define FPGA_TARGET_XILINX or FPGA_TARGET_ALTERA.");
`endif
`endif
endmodule // SyncSpRamBeNx64

View file

@ -0,0 +1,124 @@
// Copyright 2014 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
/**
* Inferable, Synchronous Two-Port RAM
*
* This RAM has a dedicated read and a dedicated write port. When reading and writing from and to
* the same address in a single clock cycle, the read port returns the data before the write.
*
* This module is designed to work with both Xilinx and Altera tools by following the respective
* guidelines:
* - Xilinx UG901 Vivado Design Suite User Guide: Synthesis (p. 106)
* - Altera Quartus II Handbook Volume 1: Design and Synthesis (p. 768)
*
* Current Maintainers:
* - Michael Schaffner <schaffer@iis.ee.ethz.ch>
*/
module SyncTpRam
#(
parameter ADDR_WIDTH = 10,
parameter DATA_DEPTH = 1024, // usually 2**ADDR_WIDTH, but can be lower
parameter DATA_WIDTH = 32,
parameter OUT_REGS = 0,
parameter SIM_INIT = 0 // for simulation only, will not be synthesized
// 0: no init, 1: zero init, 2: random init
// note: on verilator, 2 is not supported. define the VERILATOR macro to work around.
)(
input logic Clk_CI,
input logic Rst_RBI,
input logic WrEn_SI,
input logic [ADDR_WIDTH-1:0] WrAddr_DI,
input logic [DATA_WIDTH-1:0] WrData_DI,
input logic RdEn_SI,
input logic [ADDR_WIDTH-1:0] RdAddr_DI,
output logic [DATA_WIDTH-1:0] RdData_DO
);
////////////////////////////
// signals, localparams
////////////////////////////
logic [DATA_WIDTH-1:0] RdData_DN;
logic [DATA_WIDTH-1:0] RdData_DP;
logic [DATA_WIDTH-1:0] Mem_DP [DATA_DEPTH-1:0];
////////////////////////////
// XILINX/ALTERA implementation
////////////////////////////
always_ff @(posedge Clk_CI)
begin
//pragma translate_off
automatic logic [DATA_WIDTH-1:0] val;
if(Rst_RBI == 1'b0 && SIM_INIT>0) begin
for(int k=0; k<DATA_DEPTH;k++) begin
if(SIM_INIT==1) val = '0;
`ifndef VERILATOR
else if(SIM_INIT==2) void'(randomize(val));
`endif
Mem_DP[k] = val;
end
end else begin
//pragma translate_on
if (RdEn_SI) begin
RdData_DN <= Mem_DP[RdAddr_DI];
end
if (WrEn_SI) begin
Mem_DP[WrAddr_DI] <= WrData_DI;
end
//pragma translate_off
`ifndef VERILATOR
end
`endif
//pragma translate_on
end
////////////////////////////
// optional output regs
////////////////////////////
// output regs
generate
if (OUT_REGS>0) begin : g_outreg
always_ff @(posedge Clk_CI or negedge Rst_RBI) begin
if(Rst_RBI == 1'b0)
begin
RdData_DP <= 0;
end
else
begin
RdData_DP <= RdData_DN;
end
end
end
endgenerate // g_outreg
// output reg bypass
generate
if (OUT_REGS==0) begin : g_oureg_byp
assign RdData_DP = RdData_DN;
end
endgenerate// g_oureg_byp
assign RdData_DO = RdData_DP;
////////////////////////////
// assertions
////////////////////////////
// pragma translate_off
assert property
(@(posedge Clk_CI) (longint'(2)**longint'(ADDR_WIDTH) >= longint'(DATA_DEPTH)))
else $error("depth out of bounds");
// pragma translate_on
endmodule // SyncTpRam

View file

@ -1,17 +1,17 @@
// Copyright 2022 Thales DIS design services SAS
// Copyright 2022 Thales Research and Technology
//
// Licensed under the Solderpad Hardware Licence, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.0
// You may obtain a copy of the License at https://solderpad.org/licenses/
//
// Original Author: Jean-Roch COULON (jean-roch.coulon@thalesgroup.com)
// Original Author: Sébastien Jacq
module tc_sram_wrapper #(
parameter int unsigned NumWords = 32'd1024, // Number of Words in data array
parameter int unsigned DataWidth = 32'd128, // Data signal width
parameter int unsigned ByteWidth = 32'd8, // Width of a data byte
parameter int unsigned NumPorts = 32'd2, // Number of read and write ports
parameter int unsigned NumPorts = 32'd1, // Number of read and write ports
parameter int unsigned Latency = 32'd1, // Latency when the read data is available
parameter SimInit = "none", // Simulation initialization
parameter bit PrintSimCfg = 1'b0, // Print configuration
@ -34,25 +34,25 @@ module tc_sram_wrapper #(
output data_t [NumPorts-1:0] rdata_o // read data
);
SyncSpRamBeNx64 #(
.ADDR_WIDTH(AddrWidth),
.DATA_DEPTH(NumWords),
.OUT_REGS (0),
// this initializes the memory with 0es. adjust to taste...
// 0: no init, 1: zero init, 2: random init, 3: deadbeef init
.SIM_INIT (1)
) i_ram (
.Clk_CI ( clk_i ),
.Rst_RBI ( rst_ni ),
.CSel_SI ( req_i[0] ),
.WrEn_SI ( we_i[0] ),
.BEn_SI ( be_i[0] ),
.WrData_DI ( wdata_i[0] ),
.Addr_DI ( addr_i[0] ),
.RdData_DO ( rdata_o[0] )
);
tc_sram #(
.NumWords(NumWords),
.DataWidth(DataWidth),
.ByteWidth(ByteWidth),
.NumPorts(NumPorts),
.Latency(Latency),
.SimInit(SimInit),
.PrintSimCfg(PrintSimCfg)
) i_tc_sram (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.req_i ( req_i ),
.we_i ( we_i ),
.be_i ( be_i ),
.wdata_i ( wdata_i ),
.addr_i ( addr_i ),
.rdata_o ( rdata_o )
);
endmodule

@ -1 +0,0 @@
Subproject commit a3ba269c0fc6cfcee6f81e5d9af018a08e479d2b

View file

@ -4,7 +4,7 @@
../../../core/include/ariane_pkg.sv
../../../core/include/wt_cache_pkg.sv
../../../common/submodules/common_cells/src/cf_math_pkg.sv
../../fpga-support/rtl/SyncSpRamBeNx64.sv
../../../common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv
../../../core/cache_subsystem/cva6_icache.sv
../../../common/submodules/common_cells/src/lfsr.sv
../../../common/submodules/common_cells/src/fifo_v3.sv

View file

@ -17,7 +17,7 @@
../ariane_axi_soc_pkg.sv
../../../core/include/ariane_axi_pkg.sv
../../../core/include/std_cache_pkg.sv
../../fpga-support/rtl/SyncSpRamBeNx64.sv
../../../common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv
../../../core/cache_subsystem/cache_ctrl.sv
../../../core/cache_subsystem/miss_handler.sv
../../../core/cache_subsystem/std_nbdcache.sv

View file

@ -18,7 +18,7 @@
../ariane_axi_soc_pkg.sv
../../../core/include/ariane_axi_pkg.sv
../../../core/include/wt_cache_pkg.sv
../../fpga-support/rtl/SyncSpRamBeNx64.sv
../../../common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv
../../../core/cache_subsystem/wt_dcache_ctrl.sv
../../../core/cache_subsystem/wt_dcache_mem.sv
../../../core/cache_subsystem/wt_dcache_missunit.sv

View file

@ -10,7 +10,7 @@
../ariane_axi_soc_pkg.sv
../../../core/include/ariane_axi_pkg.sv
../../../core/include/wt_cache_pkg.sv
../../fpga-support/rtl/SyncSpRamBeNx64.sv
../../../common/local/techlib/fpga/rtl/SyncSpRamBeNx64.sv
../../../core/cache_subsystem/wt_dcache_ctrl.sv
../../../core/cache_subsystem/wt_dcache_mem.sv
../../../core/cache_subsystem/wt_dcache_missunit.sv