Altera apu agilex7 (#2647)
Some checks are pending
bender-up-to-date / bender-up-to-date (push) Waiting to run
ci / build-riscv-tests (push) Waiting to run
ci / execute-riscv64-tests (push) Blocked by required conditions
ci / execute-riscv32-tests (push) Blocked by required conditions

This PR is adding the APU design adapted to Altera Agilex7 FPGA.

It does not include integration in the Makefile nor automatic generation of Altera IPs, that will be the last PR of the Altera support.
This commit is contained in:
AngelaGonzalezMarino 2024-12-04 15:54:41 +01:00 committed by GitHub
parent de0ebf0409
commit f7eb9c1e7b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 4166 additions and 0 deletions

6
.gitmodules vendored
View file

@ -49,3 +49,9 @@
[submodule "docs/06_cv32a65x_riscv/riscv-isa-manual"]
path = docs/riscv-isa/riscv-isa-manual
url = https://github.com/riscv/riscv-isa-manual.git
[submodule "corev_apu/fpga/src/apb"]
path = corev_apu/fpga/src/apb
url = https://github.com/pulp-platform/apb.git
[submodule "corev_apu/fpga/src/gpio"]
path = corev_apu/fpga/src/gpio
url = https://github.com/pulp-platform/gpio.git

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,743 @@
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright 2024 PlanV Technology
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Intel Peripherals
`include "register_interface/assign.svh"
`include "register_interface/typedef.svh"
module cva6_peripherals #(
parameter int AxiAddrWidth = -1,
parameter int AxiDataWidth = -1,
parameter int AxiIdWidth = -1,
parameter int AxiUserWidth = 1,
parameter bit InclUART = 1,
parameter bit InclSPI = 0,
parameter bit InclEthernet = 0,
parameter bit InclGPIO = 0,
parameter bit InclTimer = 1
) (
input logic clk_i , // Clock
input logic clk_200MHz_i ,
input logic rst_ni , // Asynchronous reset active low
AXI_BUS.Slave plic ,
AXI_BUS.Slave uart ,
AXI_BUS.Slave spi ,
AXI_BUS.Slave gpio ,
AXI_BUS.Slave ethernet ,
AXI_BUS.Slave timer ,
output logic [1:0] irq_o ,
// UART
input logic rx_i ,
output logic tx_o ,
// Ethernet
input logic eth_clk_i ,
input wire eth_rxck ,
input wire eth_rxctl ,
input wire [3:0] eth_rxd ,
output wire eth_txck ,
output wire eth_txctl ,
output wire [3:0] eth_txd ,
output wire eth_rst_n ,
input logic phy_tx_clk_i , // 125 MHz Clock
// MDIO Interface
inout wire eth_mdio ,
output logic eth_mdc ,
// SPI
output logic spi_clk_o ,
output logic spi_mosi ,
input logic spi_miso ,
output logic spi_ss ,
// SD Card
input logic sd_clk_i ,
output logic [7:0] leds_o ,
input logic [7:0] dip_switches_i
);
// ---------------
// 1. PLIC
// ---------------
logic [ariane_soc::NumSources-1:0] irq_sources;
// Unused interrupt sources
assign irq_sources[ariane_soc::NumSources-1:7] = '0;
REG_BUS #(
.ADDR_WIDTH ( 32 ),
.DATA_WIDTH ( 32 )
) reg_bus (clk_i);
logic plic_penable;
logic plic_pwrite;
logic [31:0] plic_paddr;
logic plic_psel;
logic [31:0] plic_pwdata;
logic [31:0] plic_prdata;
logic plic_pready;
logic plic_pslverr;
axi2apb_64_32 #(
.AXI4_ADDRESS_WIDTH ( AxiAddrWidth ),
.AXI4_RDATA_WIDTH ( AxiDataWidth ),
.AXI4_WDATA_WIDTH ( AxiDataWidth ),
.AXI4_ID_WIDTH ( AxiIdWidth ),
.AXI4_USER_WIDTH ( AxiUserWidth ),
.BUFF_DEPTH_SLAVE ( 2 ),
.APB_ADDR_WIDTH ( 32 )
) i_axi2apb_64_32_plic (
.ACLK ( clk_i ),
.ARESETn ( rst_ni ),
.test_en_i ( 1'b0 ),
.AWID_i ( plic.aw_id ),
.AWADDR_i ( plic.aw_addr ),
.AWLEN_i ( plic.aw_len ),
.AWSIZE_i ( plic.aw_size ),
.AWBURST_i ( plic.aw_burst ),
.AWLOCK_i ( plic.aw_lock ),
.AWCACHE_i ( plic.aw_cache ),
.AWPROT_i ( plic.aw_prot ),
.AWREGION_i( plic.aw_region ),
.AWUSER_i ( plic.aw_user ),
.AWQOS_i ( plic.aw_qos ),
.AWVALID_i ( plic.aw_valid ),
.AWREADY_o ( plic.aw_ready ),
.WDATA_i ( plic.w_data ),
.WSTRB_i ( plic.w_strb ),
.WLAST_i ( plic.w_last ),
.WUSER_i ( plic.w_user ),
.WVALID_i ( plic.w_valid ),
.WREADY_o ( plic.w_ready ),
.BID_o ( plic.b_id ),
.BRESP_o ( plic.b_resp ),
.BVALID_o ( plic.b_valid ),
.BUSER_o ( plic.b_user ),
.BREADY_i ( plic.b_ready ),
.ARID_i ( plic.ar_id ),
.ARADDR_i ( plic.ar_addr ),
.ARLEN_i ( plic.ar_len ),
.ARSIZE_i ( plic.ar_size ),
.ARBURST_i ( plic.ar_burst ),
.ARLOCK_i ( plic.ar_lock ),
.ARCACHE_i ( plic.ar_cache ),
.ARPROT_i ( plic.ar_prot ),
.ARREGION_i( plic.ar_region ),
.ARUSER_i ( plic.ar_user ),
.ARQOS_i ( plic.ar_qos ),
.ARVALID_i ( plic.ar_valid ),
.ARREADY_o ( plic.ar_ready ),
.RID_o ( plic.r_id ),
.RDATA_o ( plic.r_data ),
.RRESP_o ( plic.r_resp ),
.RLAST_o ( plic.r_last ),
.RUSER_o ( plic.r_user ),
.RVALID_o ( plic.r_valid ),
.RREADY_i ( plic.r_ready ),
.PENABLE ( plic_penable ),
.PWRITE ( plic_pwrite ),
.PADDR ( plic_paddr ),
.PSEL ( plic_psel ),
.PWDATA ( plic_pwdata ),
.PRDATA ( plic_prdata ),
.PREADY ( plic_pready ),
.PSLVERR ( plic_pslverr )
);
apb_to_reg i_apb_to_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.penable_i ( plic_penable ),
.pwrite_i ( plic_pwrite ),
.paddr_i ( plic_paddr ),
.psel_i ( plic_psel ),
.pwdata_i ( plic_pwdata ),
.prdata_o ( plic_prdata ),
.pready_o ( plic_pready ),
.pslverr_o ( plic_pslverr ),
.reg_o ( reg_bus )
);
// define reg type according to REG_BUS above
`REG_BUS_TYPEDEF_ALL(plic, logic[31:0], logic[31:0], logic[3:0])
plic_req_t plic_req;
plic_rsp_t plic_rsp;
// assign REG_BUS.out to (req_t, rsp_t) pair
`REG_BUS_ASSIGN_TO_REQ(plic_req, reg_bus)
`REG_BUS_ASSIGN_FROM_RSP(reg_bus, plic_rsp)
plic_top #(
.N_SOURCE ( ariane_soc::NumSources ),
.N_TARGET ( ariane_soc::NumTargets ),
.MAX_PRIO ( ariane_soc::MaxPriority ),
.reg_req_t ( plic_req_t ),
.reg_rsp_t ( plic_rsp_t )
) i_plic (
.clk_i,
.rst_ni,
.req_i ( plic_req ),
.resp_o ( plic_rsp ),
.le_i ( '0 ), // 0:level 1:edge
.irq_sources_i ( irq_sources ),
.eip_targets_o ( irq_o )
);
// ---------------
// 2. UART
// ---------------
logic uart_penable;
logic uart_pwrite;
logic [31:0] uart_paddr;
logic uart_psel;
logic [31:0] uart_pwdata;
logic [31:0] uart_prdata;
logic uart_pready;
logic uart_pslverr;
axi2apb_64_32 #(
.AXI4_ADDRESS_WIDTH ( AxiAddrWidth ),
.AXI4_RDATA_WIDTH ( AxiDataWidth ),
.AXI4_WDATA_WIDTH ( AxiDataWidth ),
.AXI4_ID_WIDTH ( AxiIdWidth ),
.AXI4_USER_WIDTH ( AxiUserWidth ),
.BUFF_DEPTH_SLAVE ( 2 ),
.APB_ADDR_WIDTH ( 32 )
) i_axi2apb_64_32_uart (
.ACLK ( clk_i ),
.ARESETn ( rst_ni ),
.test_en_i ( 1'b0 ),
.AWID_i ( uart.aw_id ),
.AWADDR_i ( uart.aw_addr ),
.AWLEN_i ( uart.aw_len ),
.AWSIZE_i ( uart.aw_size ),
.AWBURST_i ( uart.aw_burst ),
.AWLOCK_i ( uart.aw_lock ),
.AWCACHE_i ( uart.aw_cache ),
.AWPROT_i ( uart.aw_prot ),
.AWREGION_i( uart.aw_region ),
.AWUSER_i ( uart.aw_user ),
.AWQOS_i ( uart.aw_qos ),
.AWVALID_i ( uart.aw_valid ),
.AWREADY_o ( uart.aw_ready ),
.WDATA_i ( uart.w_data ),
.WSTRB_i ( uart.w_strb ),
.WLAST_i ( uart.w_last ),
.WUSER_i ( uart.w_user ),
.WVALID_i ( uart.w_valid ),
.WREADY_o ( uart.w_ready ),
.BID_o ( uart.b_id ),
.BRESP_o ( uart.b_resp ),
.BVALID_o ( uart.b_valid ),
.BUSER_o ( uart.b_user ),
.BREADY_i ( uart.b_ready ),
.ARID_i ( uart.ar_id ),
.ARADDR_i ( uart.ar_addr ),
.ARLEN_i ( uart.ar_len ),
.ARSIZE_i ( uart.ar_size ),
.ARBURST_i ( uart.ar_burst ),
.ARLOCK_i ( uart.ar_lock ),
.ARCACHE_i ( uart.ar_cache ),
.ARPROT_i ( uart.ar_prot ),
.ARREGION_i( uart.ar_region ),
.ARUSER_i ( uart.ar_user ),
.ARQOS_i ( uart.ar_qos ),
.ARVALID_i ( uart.ar_valid ),
.ARREADY_o ( uart.ar_ready ),
.RID_o ( uart.r_id ),
.RDATA_o ( uart.r_data ),
.RRESP_o ( uart.r_resp ),
.RLAST_o ( uart.r_last ),
.RUSER_o ( uart.r_user ),
.RVALID_o ( uart.r_valid ),
.RREADY_i ( uart.r_ready ),
.PENABLE ( uart_penable ),
.PWRITE ( uart_pwrite ),
.PADDR ( uart_paddr ),
.PSEL ( uart_psel ),
.PWDATA ( uart_pwdata ),
.PRDATA ( uart_prdata ),
.PREADY ( uart_pready ),
.PSLVERR ( uart_pslverr )
);
if (InclUART) begin : gen_uart
apb_uart i_apb_uart (
.CLK ( clk_i ),
.RSTN ( rst_ni ),
.PSEL ( uart_psel ),
.PENABLE ( uart_penable ),
.PWRITE ( uart_pwrite ),
.PADDR ( uart_paddr[4:2] ),
.PWDATA ( uart_pwdata ),
.PRDATA ( uart_prdata ),
.PREADY ( uart_pready ),
.PSLVERR ( uart_pslverr ),
.INT ( irq_sources[0] ),
.OUT1N ( ), // keep open
.OUT2N ( ), // keep open
.RTSN ( ), // no flow control
.DTRN ( ), // no flow control
.CTSN ( 1'b0 ),
.DSRN ( 1'b0 ),
.DCDN ( 1'b0 ),
.RIN ( 1'b0 ),
.SIN ( rx_i ),
.SOUT ( tx_o )
);
end else begin
/* pragma translate_off */
`ifndef VERILATOR
mock_uart i_mock_uart (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.penable_i ( uart_penable ),
.pwrite_i ( uart_pwrite ),
.paddr_i ( uart_paddr ),
.psel_i ( uart_psel ),
.pwdata_i ( uart_pwdata ),
.prdata_o ( uart_prdata ),
.pready_o ( uart_pready ),
.pslverr_o ( uart_pslverr )
);
`endif
/* pragma translate_on */
end
// ---------------
// 3. SPI
// ---------------
assign spi.b_user = 1'b0;
assign spi.r_user = 1'b0;
if (InclSPI) begin : gen_spi
logic spi_penable;
logic spi_pwrite;
logic [31:0] spi_paddr;
logic spi_psel;
logic [31:0] spi_pwdata;
logic [31:0] spi_prdata;
logic spi_pready;
logic spi_pslverr;
axi2apb_64_32 #(
.AXI4_ADDRESS_WIDTH ( AxiAddrWidth ),
.AXI4_RDATA_WIDTH ( AxiDataWidth ),
.AXI4_WDATA_WIDTH ( AxiDataWidth ),
.AXI4_ID_WIDTH ( AxiIdWidth ),
.AXI4_USER_WIDTH ( AxiUserWidth ),
.BUFF_DEPTH_SLAVE ( 2 ),
.APB_ADDR_WIDTH ( 32 )
) i_axi2apb_64_32_spi (
.ACLK ( clk_i ),
.ARESETn ( rst_ni ),
.test_en_i ( 1'b0 ),
.AWID_i ( spi.aw_id ),
.AWADDR_i ( spi.aw_addr ),
.AWLEN_i ( spi.aw_len ),
.AWSIZE_i ( spi.aw_size ),
.AWBURST_i ( spi.aw_burst ),
.AWLOCK_i ( spi.aw_lock ),
.AWCACHE_i ( spi.aw_cache ),
.AWPROT_i ( spi.aw_prot ),
.AWREGION_i( spi.aw_region ),
.AWUSER_i ( spi.aw_user ),
.AWQOS_i ( spi.aw_qos ),
.AWVALID_i ( spi.aw_valid ),
.AWREADY_o ( spi.aw_ready ),
.WDATA_i ( spi.w_data ),
.WSTRB_i ( spi.w_strb ),
.WLAST_i ( spi.w_last ),
.WUSER_i ( spi.w_user ),
.WVALID_i ( spi.w_valid ),
.WREADY_o ( spi.w_ready ),
.BID_o ( spi.b_id ),
.BRESP_o ( spi.b_resp ),
.BVALID_o ( spi.b_valid ),
// .BUSER_o ( spi.b_user ),
.BREADY_i ( spi.b_ready ),
.ARID_i ( spi.ar_id ),
.ARADDR_i ( spi.ar_addr ),
.ARLEN_i ( spi.ar_len ),
.ARSIZE_i ( spi.ar_size ),
.ARBURST_i ( spi.ar_burst ),
.ARLOCK_i ( spi.ar_lock ),
.ARCACHE_i ( spi.ar_cache ),
.ARPROT_i ( spi.ar_prot ),
.ARREGION_i( spi.ar_region ),
.ARUSER_i ( spi.ar_user ),
.ARQOS_i ( spi.ar_qos ),
.ARVALID_i ( spi.ar_valid ),
.ARREADY_o ( spi.ar_ready ),
.RID_o ( spi.r_id ),
.RDATA_o ( spi.r_data ),
.RRESP_o ( spi.r_resp ),
.RLAST_o ( spi.r_last ),
// .RUSER_o ( spi.r_user ),
.RVALID_o ( spi.r_valid ),
.RREADY_i ( spi.r_ready ),
.PENABLE ( spi_penable ),
.PWRITE ( spi_pwrite ),
.PADDR ( spi_paddr ),
.PSEL ( spi_psel ),
.PWDATA ( spi_pwdata ),
.PRDATA ( spi_prdata ),
.PREADY ( spi_pready ),
.PSLVERR ( spi_pslverr )
);
apb_spi_master #(
.BUFFER_DEPTH (10),
.APB_ADDR_WIDTH(32) //APB slaves are 4KB by default
) SPI0(
.HCLK(clk_i),
.HRESETn(rst_ni),
.PADDR(spi_paddr),
.PWDATA(spi_pwdata),
.PWRITE(spi_pwrite),
.PSEL(spi_psel),
.PENABLE(spi_penable),
.PRDATA(spi_prdata),
.PREADY(spi_pready),
.PSLVERR(spi_pslverr),
.events_o(irq_sources[1]),
.spi_mode( ),
.spi_clk(spi_clk_o),
.spi_csn0(spi_ss),
.spi_sdo0(spi_mosi),
.spi_sdi0( ),
.spi_csn1( ),
.spi_sdo1( ),
.spi_sdi1(spi_miso),
.spi_csn2( ),
.spi_sdo2( ),
.spi_sdi2( ),
.spi_csn3( ),
.spi_sdo3( ),
.spi_sdi3( )
);
end else begin
assign spi_clk_o = 1'b0;
assign spi_mosi = 1'b0;
assign spi_ss = 1'b0;
// assign irq_sources [1] = 1'b0;
assign spi.aw_ready = 1'b1;
assign spi.ar_ready = 1'b1;
assign spi.w_ready = 1'b1;
assign spi.b_valid = spi.aw_valid;
assign spi.b_id = spi.aw_id;
assign spi.b_resp = axi_pkg::RESP_SLVERR;
assign spi.b_user = '0;
assign spi.r_valid = spi.ar_valid;
assign spi.r_resp = axi_pkg::RESP_SLVERR;
assign spi.r_data = 'hdeadbeef;
assign spi.r_last = 1'b1;
end
// ---------------
// 4. Ethernet
// ---------------
if (InclEthernet) begin : gen_ethernet
logic clk_200_int, clk_rgmii, clk_rgmii_quad;
logic eth_en, eth_we, eth_int_n, eth_pme_n, eth_mdio_i, eth_mdio_o, eth_mdio_oe;
logic [AxiAddrWidth-1:0] eth_addr;
logic [AxiDataWidth-1:0] eth_wrdata, eth_rdata;
logic [AxiDataWidth/8-1:0] eth_be;
axi2mem #(
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) i_axi2rom (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.slave ( ethernet ),
.req_o ( eth_en ),
.we_o ( eth_we ),
.addr_o ( eth_addr ),
.be_o ( eth_be ),
.data_o ( eth_wrdata ),
.data_i ( eth_rdata )
);
framing_top #(
.TARGET("ALTERA")
) eth_rgmii (
.msoc_clk(clk_i),
.core_lsu_addr(eth_addr[14:0]),
.core_lsu_wdata(eth_wrdata),
.core_lsu_be(eth_be),
.ce_d(eth_en),
.we_d(eth_en & eth_we),
.framing_sel(eth_en),
.framing_rdata(eth_rdata),
.rst_int(!rst_ni),
.clk_int(phy_tx_clk_i), // 125 MHz in-phase
.clk90_int(eth_clk_i), // 125 MHz quadrature
.clk_200_int(clk_200MHz_i),
/*
* Ethernet: 1000BASE-T RGMII
*/
.phy_rx_clk(eth_rxck),
.phy_rxd(eth_rxd),
.phy_rx_ctl(eth_rxctl),
.phy_tx_clk(eth_txck),
.phy_txd(eth_txd),
.phy_tx_ctl(eth_txctl),
.phy_reset_n(eth_rst_n),
.phy_int_n(eth_int_n),
.phy_pme_n(eth_pme_n),
.phy_mdc(eth_mdc),
.phy_mdio_i(eth_mdio_i),
.phy_mdio_o(eth_mdio_o),
.phy_mdio_oe(eth_mdio_oe),
.eth_irq(irq_sources[2])
);
iobuf iobuf_inst (
.dout (eth_mdio_i), // output, width = 1, dout.export
.din (eth_mdio_o), // input, width = 1, din.export
.oe (~eth_mdio_oe), // input, width = 1, oe.export
.pad_io (eth_mdio) // inout, width = 1, pad_io.export
);
end else begin
assign irq_sources [2] = 1'b0;
assign ethernet.aw_ready = 1'b1;
assign ethernet.ar_ready = 1'b1;
assign ethernet.w_ready = 1'b1;
assign ethernet.b_valid = ethernet.aw_valid;
assign ethernet.b_id = ethernet.aw_id;
assign ethernet.b_resp = axi_pkg::RESP_SLVERR;
assign ethernet.b_user = '0;
assign ethernet.r_valid = ethernet.ar_valid;
assign ethernet.r_resp = axi_pkg::RESP_SLVERR;
assign ethernet.r_data = 'hdeadbeef;
assign ethernet.r_last = 1'b1;
end
// 5. GPIO
assign gpio.b_user = 1'b0;
assign gpio.r_user = 1'b0;
if (InclGPIO) begin : gen_gpio
logic gpio_penable;
logic gpio_pwrite;
logic [31:0] gpio_paddr;
logic gpio_psel;
logic [31:0] gpio_pwdata;
logic [31:0] gpio_prdata;
logic gpio_pready;
logic gpio_pslverr;
axi2apb_64_32 #(
.AXI4_ADDRESS_WIDTH ( AxiAddrWidth ),
.AXI4_RDATA_WIDTH ( AxiDataWidth ),
.AXI4_WDATA_WIDTH ( AxiDataWidth ),
.AXI4_ID_WIDTH ( AxiIdWidth ),
.AXI4_USER_WIDTH ( AxiUserWidth ),
.BUFF_DEPTH_SLAVE ( 2 ),
.APB_ADDR_WIDTH ( 32 )
) i_axi2apb_64_32_gpio (
.ACLK ( clk_i ),
.ARESETn ( rst_ni ),
.test_en_i ( 1'b0 ),
.AWID_i ( gpio.aw_id ),
.AWADDR_i ( gpio.aw_addr ),
.AWLEN_i ( gpio.aw_len ),
.AWSIZE_i ( gpio.aw_size ),
.AWBURST_i ( gpio.aw_burst ),
.AWLOCK_i ( gpio.aw_lock ),
.AWCACHE_i ( gpio.aw_cache ),
.AWPROT_i ( gpio.aw_prot ),
.AWREGION_i( gpio.aw_region ),
.AWUSER_i ( gpio.aw_user ),
.AWQOS_i ( gpio.aw_qos ),
.AWVALID_i ( gpio.aw_valid ),
.AWREADY_o ( gpio.aw_ready ),
.WDATA_i ( gpio.w_data ),
.WSTRB_i ( gpio.w_strb ),
.WLAST_i ( gpio.w_last ),
.WUSER_i ( gpio.w_user ),
.WVALID_i ( gpio.w_valid ),
.WREADY_o ( gpio.w_ready ),
.BID_o ( gpio.b_id ),
.BRESP_o ( gpio.b_resp ),
.BVALID_o ( gpio.b_valid ),
// .BUSER_o ( gpio.b_user ),
.BREADY_i ( gpio.b_ready ),
.ARID_i ( gpio.ar_id ),
.ARADDR_i ( gpio.ar_addr ),
.ARLEN_i ( gpio.ar_len ),
.ARSIZE_i ( gpio.ar_size ),
.ARBURST_i ( gpio.ar_burst ),
.ARLOCK_i ( gpio.ar_lock ),
.ARCACHE_i ( gpio.ar_cache ),
.ARPROT_i ( gpio.ar_prot ),
.ARREGION_i( gpio.ar_region ),
.ARUSER_i ( gpio.ar_user ),
.ARQOS_i ( gpio.ar_qos ),
.ARVALID_i ( gpio.ar_valid ),
.ARREADY_o ( gpio.ar_ready ),
.RID_o ( gpio.r_id ),
.RDATA_o ( gpio.r_data ),
.RRESP_o ( gpio.r_resp ),
.RLAST_o ( gpio.r_last ),
// .RUSER_o ( gpio.r_user ),
.RVALID_o ( gpio.r_valid ),
.RREADY_i ( gpio.r_ready ),
.PENABLE ( gpio_penable ),
.PWRITE ( gpio_pwrite ),
.PADDR ( gpio_paddr ),
.PSEL ( gpio_psel ),
.PWDATA ( gpio_pwdata ),
.PRDATA ( gpio_prdata ),
.PREADY ( gpio_pready ),
.PSLVERR ( gpio_pslverr )
);
APB #(.ADDR_WIDTH ( 32 ),
.DATA_WIDTH ( 32 )
) apb_gpio();
assign apb_gpio.paddr = gpio_paddr;
assign apb_gpio.pprot = 3'b0;
assign apb_gpio.psel = gpio_psel;
assign apb_gpio.penable = gpio_penable;
assign apb_gpio.pwrite = gpio_pwrite;
assign apb_gpio.pwdata = gpio_pwdata;
assign apb_gpio.pstrb = {4{gpio_pwrite}};
assign gpio_prdata = apb_gpio.prdata;
assign gpio_pready = apb_gpio.pready;
assign gpio_pslverr = apb_gpio.pslverr;
gpio_apb_wrap_intf # (
.ADDR_WIDTH(32),
// DATA_WIDTH of the APB interface
.DATA_WIDTH(32)
) i_gpio(
.clk_i(clk_i),
.rst_ni(rst_ni),
.gpio_in('0),
.gpio_out(leds_o),
.gpio_tx_en_o(), // 0 -> input, 1 -> output
.gpio_in_sync_o(), // sampled and synchronized GPIO
// input.
.global_interrupt_o(),
.pin_level_interrupts_o(),
.apb_slave (apb_gpio)
);
end
// 6. Timer
if (InclTimer) begin : gen_timer
logic timer_penable;
logic timer_pwrite;
logic [31:0] timer_paddr;
logic timer_psel;
logic [31:0] timer_pwdata;
logic [31:0] timer_prdata;
logic timer_pready;
logic timer_pslverr;
axi2apb_64_32 #(
.AXI4_ADDRESS_WIDTH ( AxiAddrWidth ),
.AXI4_RDATA_WIDTH ( AxiDataWidth ),
.AXI4_WDATA_WIDTH ( AxiDataWidth ),
.AXI4_ID_WIDTH ( AxiIdWidth ),
.AXI4_USER_WIDTH ( AxiUserWidth ),
.BUFF_DEPTH_SLAVE ( 2 ),
.APB_ADDR_WIDTH ( 32 )
) i_axi2apb_64_32_timer (
.ACLK ( clk_i ),
.ARESETn ( rst_ni ),
.test_en_i ( 1'b0 ),
.AWID_i ( timer.aw_id ),
.AWADDR_i ( timer.aw_addr ),
.AWLEN_i ( timer.aw_len ),
.AWSIZE_i ( timer.aw_size ),
.AWBURST_i ( timer.aw_burst ),
.AWLOCK_i ( timer.aw_lock ),
.AWCACHE_i ( timer.aw_cache ),
.AWPROT_i ( timer.aw_prot ),
.AWREGION_i( timer.aw_region ),
.AWUSER_i ( timer.aw_user ),
.AWQOS_i ( timer.aw_qos ),
.AWVALID_i ( timer.aw_valid ),
.AWREADY_o ( timer.aw_ready ),
.WDATA_i ( timer.w_data ),
.WSTRB_i ( timer.w_strb ),
.WLAST_i ( timer.w_last ),
.WUSER_i ( timer.w_user ),
.WVALID_i ( timer.w_valid ),
.WREADY_o ( timer.w_ready ),
.BID_o ( timer.b_id ),
.BRESP_o ( timer.b_resp ),
.BVALID_o ( timer.b_valid ),
.BUSER_o ( timer.b_user ),
.BREADY_i ( timer.b_ready ),
.ARID_i ( timer.ar_id ),
.ARADDR_i ( timer.ar_addr ),
.ARLEN_i ( timer.ar_len ),
.ARSIZE_i ( timer.ar_size ),
.ARBURST_i ( timer.ar_burst ),
.ARLOCK_i ( timer.ar_lock ),
.ARCACHE_i ( timer.ar_cache ),
.ARPROT_i ( timer.ar_prot ),
.ARREGION_i( timer.ar_region ),
.ARUSER_i ( timer.ar_user ),
.ARQOS_i ( timer.ar_qos ),
.ARVALID_i ( timer.ar_valid ),
.ARREADY_o ( timer.ar_ready ),
.RID_o ( timer.r_id ),
.RDATA_o ( timer.r_data ),
.RRESP_o ( timer.r_resp ),
.RLAST_o ( timer.r_last ),
.RUSER_o ( timer.r_user ),
.RVALID_o ( timer.r_valid ),
.RREADY_i ( timer.r_ready ),
.PENABLE ( timer_penable ),
.PWRITE ( timer_pwrite ),
.PADDR ( timer_paddr ),
.PSEL ( timer_psel ),
.PWDATA ( timer_pwdata ),
.PRDATA ( timer_prdata ),
.PREADY ( timer_pready ),
.PSLVERR ( timer_pslverr )
);
apb_timer #(
.APB_ADDR_WIDTH ( 32 ),
.TIMER_CNT ( 2 )
) i_timer (
.HCLK ( clk_i ),
.HRESETn ( rst_ni ),
.PSEL ( timer_psel ),
.PENABLE ( timer_penable ),
.PWRITE ( timer_pwrite ),
.PADDR ( timer_paddr ),
.PWDATA ( timer_pwdata ),
.PRDATA ( timer_prdata ),
.PREADY ( timer_pready ),
.PSLVERR ( timer_pslverr ),
.irq_o ( irq_sources[6:3] )
);
end
endmodule

View file

@ -0,0 +1,281 @@
/* Copyright 2018 ETH Zurich and University of Bologna.
* Copyright 2024 Thales AVS
* Copyright and related rights are licensed under the Solderpad Hardware
* License, Version 0.51 (the “License”); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
* or agreed to in writing, software, hardware and materials distributed under
* this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* File: axi_riscv_debug_module.sv
* Author: Florian Zaruba <zarubaf@iis.ee.ethz.ch>
* Date: 19.7.2018
* Additional contributions by Nicolas Levasseur, Thales AVS
* Date: 8.11.2024
* Description: Virtual JTAG DMI (debug module interface)
*
*/
module dmi_vjtag #(
parameter int unsigned IrLength = 10,
parameter logic [31:0] IdcodeValue = 32'h00000001
) (
input logic clk_i, // DMI Clock
input logic rst_ni, // Asynchronous reset active low
input logic testmode_i,
output logic dmi_rst_no, // hard reset
output dm::dmi_req_t dmi_req_o,
output logic dmi_req_valid_o,
input logic dmi_req_ready_i,
input dm::dmi_resp_t dmi_resp_i,
output logic dmi_resp_ready_o,
input logic dmi_resp_valid_i,
input logic tck_i, // JTAG test clock pad
input logic trst_ni, // JTAG test reset pad
input logic td_i, // JTAG test data input pad
output logic td_o, // JTAG test data output pad
output logic tdo_oe_o, // Data out output enable
input logic[IrLength-1:0] ir_in_i, // Virtual IR in
input logic jtag_state_tlr_i, // Test logic reset
input logic virtual_state_cdr_i, // Virtual Captude DR
input logic virtual_state_sdr_i, // Virtual Shift DR
input logic virtual_state_udr_i // Virutal Update DR
);
assign dmi_rst_no = rst_ni;
logic dmi_access;
logic dtmcs_select;
logic dmi_reset;
logic dmi_tdi;
logic dmi_tdo;
dm::dmi_req_t dmi_req;
logic dmi_req_ready;
logic dmi_req_valid;
dm::dmi_resp_t dmi_resp;
logic dmi_resp_valid;
logic dmi_resp_ready;
typedef struct packed {
logic [6:0] address;
logic [31:0] data;
logic [1:0] op;
} dmi_t;
typedef enum logic [1:0] {
DMINoError = 2'h0, DMIReservedError = 2'h1,
DMIOPFailed = 2'h2, DMIBusy = 2'h3
} dmi_error_e;
typedef enum logic [2:0] { Idle, Read, WaitReadValid, Write, WaitWriteValid } state_e;
state_e state_d, state_q;
logic [$bits(dmi_t)-1:0] dr_d, dr_q;
logic [6:0] address_d, address_q;
logic [31:0] data_d, data_q;
dmi_t dmi;
assign dmi = dmi_t'(dr_q);
assign dmi_req.addr = address_q;
assign dmi_req.data = data_q;
assign dmi_req.op = (state_q == Write) ? dm::DTM_WRITE : dm::DTM_READ;
// we'will always be ready to accept the data we requested
assign dmi_resp_ready = 1'b1;
logic error_dmi_busy;
dmi_error_e error_d, error_q;
always_comb begin : p_fsm
error_dmi_busy = 1'b0;
// default assignments
state_d = state_q;
address_d = address_q;
data_d = data_q;
error_d = error_q;
dmi_req_valid = 1'b0;
// STATE MACHINE
unique case (state_q)
Idle: begin
// make sure that no error is sticky
if (dmi_access && virtual_state_udr_i && (error_q == DMINoError)) begin
// save address and value
address_d = dmi.address;
data_d = dmi.data;
if (dm::dtm_op_e'(dmi.op) == dm::DTM_READ) begin
state_d = Read;
end else if (dm::dtm_op_e'(dmi.op) == dm::DTM_WRITE) begin
state_d = Write;
end
// else this is a nop and we can stay here
end
end
Read: begin
dmi_req_valid = 1'b1;
if (dmi_req_ready) begin
state_d = WaitReadValid;
end
end
WaitReadValid: begin
// load data into register and shift out
if (dmi_resp_valid) begin
data_d = dmi_resp.data;
state_d = Idle;
end
end
Write: begin
dmi_req_valid = 1'b1;
// request sent, wait for response before going back to idle
if (dmi_req_ready) begin
state_d = WaitWriteValid;
end
end
WaitWriteValid: begin
// got a valid answer go back to idle
if (dmi_resp_valid) begin
state_d = Idle;
end
end
default: begin
// just wait for idle here
if (dmi_resp_valid) begin
state_d = Idle;
end
end
endcase
// virtual_state_udr_i means we got another request but we didn't finish
// the one in progress, this state is sticky
if (virtual_state_udr_i && state_q != Idle) begin
error_dmi_busy = 1'b1;
end
// if virtual_state_cdr_i goes high while we are in the read state
// or in the corresponding wait state we are not giving back a valid word
// -> throw an error
if (virtual_state_cdr_i && state_q inside {Read, WaitReadValid}) begin
error_dmi_busy = 1'b1;
end
if (error_dmi_busy) begin
error_d = DMIBusy;
end
// clear sticky error flag
if (virtual_state_udr_i && dmi_reset && dtmcs_select) begin
error_d = DMINoError;
end
end
// shift register
// ---
// CHANGED FROM DR_Q TO DR_D BECAUSE OF
// DELAY DUE TO THE ARCHITECTURE OF VJTAG
// ---
assign dmi_tdo = dr_d[0];
// ---
// JTAG DR operations
always_comb begin : p_shift
dr_d = dr_q;
if (virtual_state_cdr_i) begin
if (dmi_access) begin
if (error_q == DMINoError && !error_dmi_busy) begin
dr_d = {address_q, data_q, DMINoError};
// DMI was busy, report an error
end else if (error_q == DMIBusy || error_dmi_busy) begin
dr_d = {address_q, data_q, DMIBusy};
end
end
end
if (virtual_state_sdr_i) begin
if (dmi_access) begin
dr_d = {dmi_tdi, dr_q[$bits(dr_q)-1:1]};
end
end
if (jtag_state_tlr_i) begin
dr_d = '0;
end
end
always_ff @(posedge tck_i or negedge trst_ni) begin : p_regs
if (!trst_ni) begin
dr_q <= '0;
state_q <= Idle;
address_q <= '0;
data_q <= '0;
error_q <= DMINoError;
end else begin
dr_q <= dr_d;
state_q <= state_d;
address_q <= address_d;
data_q <= data_d;
error_q <= error_d;
end
end
// ---------
// TAP
// ---------
dmi_vjtag_tap #(
.IrLength (IrLength),
.IdcodeValue(IdcodeValue)
) i_dmi_jtag_tap (
.tck_i,
.trst_ni,
.td_i,
.td_o,
.tdo_oe_o,
.testmode_i,
.ir_in_i,
.jtag_state_tlr_i,
.virtual_state_cdr_i,
.virtual_state_sdr_i,
.virtual_state_udr_i,
.dmi_access_o ( dmi_access ),
.dtmcs_select_o ( dtmcs_select ),
.dmi_reset_o ( dmi_reset ),
.dmi_error_i ( error_q ),
.dmi_tdi_o ( dmi_tdi ),
.dmi_tdo_i ( dmi_tdo )
);
// ---------
// CDC
// ---------
dmi_cdc i_dmi_cdc (
// JTAG side (master side)
.tck_i,
.trst_ni,
.jtag_dmi_req_i ( dmi_req ),
.jtag_dmi_ready_o ( dmi_req_ready ),
.jtag_dmi_valid_i ( dmi_req_valid ),
.jtag_dmi_resp_o ( dmi_resp ),
.jtag_dmi_valid_o ( dmi_resp_valid ),
.jtag_dmi_ready_i ( dmi_resp_ready ),
// core side
.clk_i,
.rst_ni,
.core_dmi_req_o ( dmi_req_o ),
.core_dmi_valid_o ( dmi_req_valid_o ),
.core_dmi_ready_i ( dmi_req_ready_i ),
.core_dmi_resp_i ( dmi_resp_i ),
.core_dmi_ready_o ( dmi_resp_ready_o ),
.core_dmi_valid_i ( dmi_resp_valid_i )
);
endmodule : dmi_vjtag

View file

@ -0,0 +1,199 @@
/* Copyright 2018 ETH Zurich and University of Bologna.
* Copyright 2024 Thales AVS
* Copyright and related rights are licensed under the Solderpad Hardware
* License, Version 0.51 (the License); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
* or agreed to in writing, software, hardware and materials distributed under
* this License is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* File: dmi_jtag_tap.sv
* Author: Florian Zaruba <zarubaf@iis.ee.ethz.ch>
* Date: 19.7.2018
* Additional contributions by Nicolas Levasseur, Thales AVS
* Date: 8.11.2024
* Description: vJTAG TAP for DMI to be able to use vJTAG IP
*
*/
module dmi_vjtag_tap #(
parameter int unsigned IrLength = 10,
// JTAG IDCODE Value
parameter logic [31:0] IdcodeValue = 32'h00000001
// xxxx version
// xxxxxxxxxxxxxxxx part number
// xxxxxxxxxxx manufacturer id
// 1 required by standard
) (
input logic tck_i, // JTAG test clock pad
input logic trst_ni, // JTAG test reset pad
input logic td_i, // JTAG test data input pad
output logic td_o, // JTAG test data output pad
output logic tdo_oe_o, // Data output enable
input logic testmode_i,
input logic[IrLength-1:0] ir_in_i, // Virtual IR in
input logic jtag_state_tlr_i, // Test logic reset
input logic virtual_state_cdr_i, // Virtual Captude DR
input logic virtual_state_sdr_i, // Virtual Shift DR
input logic virtual_state_udr_i, // Virutal Update DR
// we want to access DMI register
output logic dmi_access_o,
// JTAG is interested in writing the DTM CSR register
output logic dtmcs_select_o,
// clear error state
output logic dmi_reset_o,
input logic [1:0] dmi_error_i,
// test data to submodule
output logic dmi_tdi_o,
// test data in from submodule
input logic dmi_tdo_i
);
// to submodule
assign dmi_tdi_o = td_i;
typedef enum logic [IrLength-1:0] {
BYPASS0 = (IrLength)'('h0),
IDCODE = (IrLength)'('h1),
DTMCSR = (IrLength)'('h10),
DMIACCESS = (IrLength)'('h11),
BYPASS1 = (IrLength)'('h1f)
} ir_reg_e;
typedef struct packed {
logic [31:18] zero1;
logic dmihardreset;
logic dmireset;
logic zero0;
logic [14:12] idle;
logic [11:10] dmistat;
logic [9:4] abits;
logic [3:0] version;
} dtmcs_t;
// ----------------
// TAP DR Regs
// ----------------
// - Bypass
// - IDCODE
// - DTM CS
logic [31:0] idcode_d, idcode_q;
logic idcode_select;
logic bypass_select;
dtmcs_t dtmcs_d, dtmcs_q;
logic bypass_d, bypass_q; // this is a 1-bit register
assign dmi_reset_o = dtmcs_q.dmireset;
always_comb begin
idcode_d = idcode_q;
bypass_d = bypass_q;
dtmcs_d = dtmcs_q;
if (virtual_state_cdr_i) begin
if (idcode_select) idcode_d = IdcodeValue;
if (bypass_select) bypass_d = 1'b0;
if (dtmcs_select_o) begin
dtmcs_d = '{
zero1 : '0,
dmihardreset : 1'b0,
dmireset : 1'b0,
zero0 : '0,
idle : 3'd1, // 1: Enter Run-Test/Idle and leave it immediately
dmistat : dmi_error_i, // 0: No error, 2: Op failed, 3: too fast
abits : 6'd7, // The size of address in dmi
version : 4'd1 // Version described in spec version 0.13 (and later?)
};
end
end
if (virtual_state_sdr_i) begin
if (idcode_select) idcode_d = {td_i, 31'(idcode_q >> 1)};
if (bypass_select) bypass_d = td_i;
if (dtmcs_select_o) dtmcs_d = {td_i, 31'(dtmcs_q >> 1)};
end
if (jtag_state_tlr_i) begin
idcode_d = IdcodeValue;
bypass_d = 1'b0;
end
end
// ----------------
// Data reg select
// ----------------
always_comb begin : p_data_reg_sel
dmi_access_o = 1'b0;
dtmcs_select_o = 1'b0;
idcode_select = 1'b0;
bypass_select = 1'b0;
unique case (ir_in_i)
BYPASS0: bypass_select = 1'b1;
IDCODE: idcode_select = 1'b1;
DTMCSR: dtmcs_select_o = 1'b1;
DMIACCESS: dmi_access_o = 1'b1;
BYPASS1: bypass_select = 1'b1;
default: bypass_select = 1'b1;
endcase
end
// ----------------
// Output select
// ----------------
logic tdo_mux;
always_comb begin : p_out_sel
// here we are shifting the DR register
unique case (ir_in_i)
IDCODE: tdo_mux = idcode_d[0]; // Reading ID code
DTMCSR: tdo_mux = dtmcs_d.version[0];
DMIACCESS: tdo_mux = dmi_tdo_i; // Read from DMI TDO
default: tdo_mux = bypass_d; // BYPASS instruction
endcase
end
// ----------------
// DFT
// ----------------
logic tck_n, tck_ni;
cluster_clock_inverter i_tck_inv (
.clk_i ( tck_i ),
.clk_o ( tck_ni )
);
pulp_clock_mux2 i_dft_tck_mux (
.clk0_i ( tck_ni ),
.clk1_i ( tck_i ), // bypass the inverted clock for testing
.clk_sel_i ( testmode_i ),
.clk_o ( tck_n )
);
// TDO changes state at negative edge of TCK
always_ff @(posedge tck_n, negedge trst_ni) begin : p_tdo_regs
if (!trst_ni) begin
td_o <= 1'b0;
tdo_oe_o <= 1'b0;
end else begin
td_o <= tdo_mux;
tdo_oe_o <= virtual_state_sdr_i;
end
end
always_ff @(posedge tck_i or negedge trst_ni) begin : p_regs
if (!trst_ni) begin
idcode_q <= IdcodeValue;
bypass_q <= 1'b0;
dtmcs_q <= '0;
end else begin
idcode_q <= idcode_d;
bypass_q <= bypass_d;
dtmcs_q <= dtmcs_d;
end
end
endmodule : dmi_vjtag_tap

@ -0,0 +1 @@
Subproject commit 77ddf073f194d44b9119949d2421be59789e69ae

View file

@ -0,0 +1,324 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 width adapter
*/
module axi_dw_adapter #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [S_DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [S_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [M_DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
output wire [ID_WIDTH-1:0] m_axi_arid,
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire [3:0] m_axi_arqos,
output wire [3:0] m_axi_arregion,
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [ID_WIDTH-1:0] m_axi_rid,
input wire [M_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
axi_dw_adapter_wr #(
.ADDR_WIDTH(ADDR_WIDTH),
.S_DATA_WIDTH(S_DATA_WIDTH),
.S_STRB_WIDTH(S_STRB_WIDTH),
.M_DATA_WIDTH(M_DATA_WIDTH),
.M_STRB_WIDTH(M_STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.AWUSER_ENABLE(AWUSER_ENABLE),
.AWUSER_WIDTH(AWUSER_WIDTH),
.WUSER_ENABLE(WUSER_ENABLE),
.WUSER_WIDTH(WUSER_WIDTH),
.BUSER_ENABLE(BUSER_ENABLE),
.BUSER_WIDTH(BUSER_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST),
.FORWARD_ID(FORWARD_ID)
)
axi_adapter_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_awid(s_axi_awid),
.s_axi_awaddr(s_axi_awaddr),
.s_axi_awlen(s_axi_awlen),
.s_axi_awsize(s_axi_awsize),
.s_axi_awburst(s_axi_awburst),
.s_axi_awlock(s_axi_awlock),
.s_axi_awcache(s_axi_awcache),
.s_axi_awprot(s_axi_awprot),
.s_axi_awqos(s_axi_awqos),
.s_axi_awregion(s_axi_awregion),
.s_axi_awuser(s_axi_awuser),
.s_axi_awvalid(s_axi_awvalid),
.s_axi_awready(s_axi_awready),
.s_axi_wdata(s_axi_wdata),
.s_axi_wstrb(s_axi_wstrb),
.s_axi_wlast(s_axi_wlast),
.s_axi_wuser(s_axi_wuser),
.s_axi_wvalid(s_axi_wvalid),
.s_axi_wready(s_axi_wready),
.s_axi_bid(s_axi_bid),
.s_axi_bresp(s_axi_bresp),
.s_axi_buser(s_axi_buser),
.s_axi_bvalid(s_axi_bvalid),
.s_axi_bready(s_axi_bready),
/*
* AXI master interface
*/
.m_axi_awid(m_axi_awid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awqos(m_axi_awqos),
.m_axi_awregion(m_axi_awregion),
.m_axi_awuser(m_axi_awuser),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awready(m_axi_awready),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_wuser(m_axi_wuser),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wready(m_axi_wready),
.m_axi_bid(m_axi_bid),
.m_axi_bresp(m_axi_bresp),
.m_axi_buser(m_axi_buser),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bready(m_axi_bready)
);
axi_dw_adapter_rd #(
.ADDR_WIDTH(ADDR_WIDTH),
.S_DATA_WIDTH(S_DATA_WIDTH),
.S_STRB_WIDTH(S_STRB_WIDTH),
.M_DATA_WIDTH(M_DATA_WIDTH),
.M_STRB_WIDTH(M_STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST),
.FORWARD_ID(FORWARD_ID)
)
axi_adapter_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interface
*/
.s_axi_arid(s_axi_arid),
.s_axi_araddr(s_axi_araddr),
.s_axi_arlen(s_axi_arlen),
.s_axi_arsize(s_axi_arsize),
.s_axi_arburst(s_axi_arburst),
.s_axi_arlock(s_axi_arlock),
.s_axi_arcache(s_axi_arcache),
.s_axi_arprot(s_axi_arprot),
.s_axi_arqos(s_axi_arqos),
.s_axi_arregion(s_axi_arregion),
.s_axi_aruser(s_axi_aruser),
.s_axi_arvalid(s_axi_arvalid),
.s_axi_arready(s_axi_arready),
.s_axi_rid(s_axi_rid),
.s_axi_rdata(s_axi_rdata),
.s_axi_rresp(s_axi_rresp),
.s_axi_rlast(s_axi_rlast),
.s_axi_ruser(s_axi_ruser),
.s_axi_rvalid(s_axi_rvalid),
.s_axi_rready(s_axi_rready),
/*
* AXI master interface
*/
.m_axi_arid(m_axi_arid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arqos(m_axi_arqos),
.m_axi_arregion(m_axi_arregion),
.m_axi_aruser(m_axi_aruser),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_arready(m_axi_arready),
.m_axi_rid(m_axi_rid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp),
.m_axi_rlast(m_axi_rlast),
.m_axi_ruser(m_axi_ruser),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rready(m_axi_rready)
);
endmodule
`resetall

View file

@ -0,0 +1,686 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 width adapter
*/
module axi_dw_adapter_rd #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [S_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_arid,
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire [3:0] m_axi_arqos,
output wire [3:0] m_axi_arregion,
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [ID_WIDTH-1:0] m_axi_rid,
input wire [M_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
parameter S_WORD_WIDTH = S_STRB_WIDTH;
parameter M_WORD_WIDTH = M_STRB_WIDTH;
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
// output bus is wider
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
$error("Error: AXI master interface data width not evenly divisble (instance %m)");
$finish;
end
if (S_WORD_SIZE != M_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
$error("Error: AXI master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [1:0] resp_reg = 2'd0, resp_next;
reg [RUSER_WIDTH-1:0] ruser_reg = {RUSER_WIDTH{1'b0}}, ruser_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next;
reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next;
reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next;
reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next;
reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next;
reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next;
reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next;
reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next;
reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
// internal datapath
reg [ID_WIDTH-1:0] s_axi_rid_int;
reg [S_DATA_WIDTH-1:0] s_axi_rdata_int;
reg [1:0] s_axi_rresp_int;
reg s_axi_rlast_int;
reg [RUSER_WIDTH-1:0] s_axi_ruser_int;
reg s_axi_rvalid_int;
reg s_axi_rready_int_reg = 1'b0;
wire s_axi_rready_int_early;
assign s_axi_arready = s_axi_arready_reg;
assign m_axi_arid = FORWARD_ID ? m_axi_arid_reg : {ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = m_axi_arsize_reg;
assign m_axi_arburst = m_axi_arburst_reg;
assign m_axi_arlock = m_axi_arlock_reg;
assign m_axi_arcache = m_axi_arcache_reg;
assign m_axi_arprot = m_axi_arprot_reg;
assign m_axi_arqos = m_axi_arqos_reg;
assign m_axi_arregion = m_axi_arregion_reg;
assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}};
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
ruser_next = ruser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
m_axi_arid_next = m_axi_arid_reg;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arsize_next = m_axi_arsize_reg;
m_axi_arburst_next = m_axi_arburst_reg;
m_axi_arlock_next = m_axi_arlock_reg;
m_axi_arcache_next = m_axi_arcache_reg;
m_axi_arprot_next = m_axi_arprot_reg;
m_axi_arqos_next = m_axi_arqos_reg;
m_axi_arregion_next = m_axi_arregion_reg;
m_axi_aruser_next = m_axi_aruser_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
m_axi_rready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = s_axi_rready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
if (m_axi_rlast) begin
// last data word, return to idle
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; split reads
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata;
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == S_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_arlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_arlen} << s_axi_arsize) + s_axi_araddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE;
end else begin
m_axi_arlen_next = ({1'b0, s_axi_arlen} + s_axi_araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT);
end
m_axi_arsize_next = M_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_arsize;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
state_next = STATE_DATA;
end
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = s_axi_rready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = m_axi_rlast;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (m_axi_rlast) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rready && m_axi_rvalid) begin
s_axi_rid_int = id_reg;
data_next = m_axi_rdata;
resp_next = m_axi_rresp;
ruser_next = m_axi_ruser;
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = m_axi_rresp;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
state_next = STATE_DATA_READ;
end else begin
m_axi_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axi_rready_next = 1'b0;
if (s_axi_rready_int_reg) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = ruser_reg;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axi_arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
m_axi_rready_next = s_axi_rready_int_early;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end else begin
// master output is narrower; merge reads and possibly split burst
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg;
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_arvalid;
resp_next = 2'd0;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (s_axi_arsize > M_BURST_SIZE) begin
// need to adjust burst size
if (s_axi_arlen >> (8+M_BURST_SIZE-s_axi_arsize) != 0) begin
// limit burst length to max
master_burst_next = (8'd255 << (s_axi_arsize-M_BURST_SIZE)) | ((~s_axi_araddr & (8'hff >> (8-s_axi_arsize))) >> M_BURST_SIZE);
end else begin
master_burst_next = (s_axi_arlen << (s_axi_arsize-M_BURST_SIZE)) | ((~s_axi_araddr & (8'hff >> (8-s_axi_arsize))) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_arlen_next = master_burst_next;
m_axi_arsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_arlen;
master_burst_size_next = s_axi_arsize;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
end
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early && !m_axi_arvalid;
if (m_axi_rready && m_axi_rvalid) begin
data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axi_rdata;
if (m_axi_rresp) begin
resp_next = m_axi_rresp;
end
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_next;
s_axi_rresp_int = resp_next;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_ruser;
s_axi_rvalid_int = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_WIDTH{1'b1}} << master_burst_size_reg);
m_axi_araddr_next = addr_next;
if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
burst_next = burst_reg - 1;
s_axi_rvalid_int = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_next >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = (burst_next << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE);
end
m_axi_arlen_next = master_burst_next;
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_rlast_int = 1'b1;
s_axi_rvalid_int = 1'b1;
s_axi_arready_next = !m_axi_arvalid;
state_next = STATE_IDLE;
end else begin
// start new burst
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
end
always @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
ruser_reg <= ruser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
m_axi_arid_reg <= m_axi_arid_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arsize_reg <= m_axi_arsize_next;
m_axi_arburst_reg <= m_axi_arburst_next;
m_axi_arlock_reg <= m_axi_arlock_next;
m_axi_arcache_reg <= m_axi_arcache_next;
m_axi_arprot_reg <= m_axi_arprot_next;
m_axi_arqos_reg <= m_axi_arqos_next;
m_axi_arregion_reg <= m_axi_arregion_next;
m_axi_aruser_reg <= m_axi_aruser_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
end
end
// output datapath logic
reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}};
reg [S_DATA_WIDTH-1:0] s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
reg [1:0] s_axi_rresp_reg = 2'd0;
reg s_axi_rlast_reg = 1'b0;
reg [RUSER_WIDTH-1:0] s_axi_ruser_reg = 1'b0;
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
reg [ID_WIDTH-1:0] temp_s_axi_rid_reg = {ID_WIDTH{1'b0}};
reg [S_DATA_WIDTH-1:0] temp_s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
reg [1:0] temp_s_axi_rresp_reg = 2'd0;
reg temp_s_axi_rlast_reg = 1'b0;
reg [RUSER_WIDTH-1:0] temp_s_axi_ruser_reg = 1'b0;
reg temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
// datapath control
reg store_axi_r_int_to_output;
reg store_axi_r_int_to_temp;
reg store_axi_r_temp_to_output;
assign s_axi_rid = s_axi_rid_reg;
assign s_axi_rdata = s_axi_rdata_reg;
assign s_axi_rresp = s_axi_rresp_reg;
assign s_axi_rlast = s_axi_rlast_reg;
assign s_axi_ruser = RUSER_ENABLE ? s_axi_ruser_reg : {RUSER_WIDTH{1'b0}};
assign s_axi_rvalid = s_axi_rvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign s_axi_rready_int_early = s_axi_rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int));
always @* begin
// transfer sink ready state to source
s_axi_rvalid_next = s_axi_rvalid_reg;
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
store_axi_r_int_to_output = 1'b0;
store_axi_r_int_to_temp = 1'b0;
store_axi_r_temp_to_output = 1'b0;
if (s_axi_rready_int_reg) begin
// input is ready
if (s_axi_rready | ~s_axi_rvalid_reg) begin
// output is ready or currently not valid, transfer data to output
s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_temp = 1'b1;
end
end else if (s_axi_rready) begin
// input is not ready, but output is ready
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
temp_s_axi_rvalid_next = 1'b0;
store_axi_r_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
s_axi_rvalid_reg <= 1'b0;
s_axi_rready_int_reg <= 1'b0;
temp_s_axi_rvalid_reg <= 1'b0;
end else begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
s_axi_rready_int_reg <= s_axi_rready_int_early;
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
end
// datapath
if (store_axi_r_int_to_output) begin
s_axi_rid_reg <= s_axi_rid_int;
s_axi_rdata_reg <= s_axi_rdata_int;
s_axi_rresp_reg <= s_axi_rresp_int;
s_axi_rlast_reg <= s_axi_rlast_int;
s_axi_ruser_reg <= s_axi_ruser_int;
end else if (store_axi_r_temp_to_output) begin
s_axi_rid_reg <= temp_s_axi_rid_reg;
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
end
if (store_axi_r_int_to_temp) begin
temp_s_axi_rid_reg <= s_axi_rid_int;
temp_s_axi_rdata_reg <= s_axi_rdata_int;
temp_s_axi_rresp_reg <= s_axi_rresp_int;
temp_s_axi_rlast_reg <= s_axi_rlast_int;
temp_s_axi_ruser_reg <= s_axi_ruser_int;
end
end
endmodule
`resetall

View file

@ -0,0 +1,779 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 width adapter
*/
module axi_dw_adapter_wr #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) interface data bus in bits
parameter S_DATA_WIDTH = 32,
// Width of input (slave) interface wstrb (width of data bus in words)
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
// Width of output (master) interface data bus in bits
parameter M_DATA_WIDTH = 32,
// Width of output (master) interface wstrb (width of data bus in words)
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0,
// Forward ID through adapter
parameter FORWARD_ID = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [S_DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [M_DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready
);
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
parameter S_WORD_WIDTH = S_STRB_WIDTH;
parameter M_WORD_WIDTH = M_STRB_WIDTH;
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
// output bus is wider
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
$error("Error: AXI master interface data width not evenly divisble (instance %m)");
$finish;
end
if (S_WORD_SIZE != M_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
$error("Error: AXI master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next;
reg [WUSER_WIDTH-1:0] wuser_reg = {WUSER_WIDTH{1'b0}}, wuser_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg burst_active_reg = 1'b0, burst_active_next;
reg first_transfer_reg = 1'b0, first_transfer_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
reg [ID_WIDTH-1:0] s_axi_bid_reg = {ID_WIDTH{1'b0}}, s_axi_bid_next;
reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
reg [BUSER_WIDTH-1:0] s_axi_buser_reg = {BUSER_WIDTH{1'b0}}, s_axi_buser_next;
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next;
reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next;
reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next;
reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next;
reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next;
reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next;
reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next;
reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next;
reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
// internal datapath
reg [M_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wlast_int;
reg [WUSER_WIDTH-1:0] m_axi_wuser_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axi_awready = s_axi_awready_reg;
assign s_axi_wready = s_axi_wready_reg;
assign s_axi_bid = s_axi_bid_reg;
assign s_axi_bresp = s_axi_bresp_reg;
assign s_axi_buser = BUSER_ENABLE ? s_axi_buser_reg : {BUSER_WIDTH{1'b0}};
assign s_axi_bvalid = s_axi_bvalid_reg;
assign m_axi_awid = FORWARD_ID ? m_axi_awid_reg : {ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = m_axi_awsize_reg;
assign m_axi_awburst = m_axi_awburst_reg;
assign m_axi_awlock = m_axi_awlock_reg;
assign m_axi_awcache = m_axi_awcache_reg;
assign m_axi_awprot = m_axi_awprot_reg;
assign m_axi_awqos = m_axi_awqos_reg;
assign m_axi_awregion = m_axi_awregion_reg;
assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}};
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
integer i;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
wuser_next = wuser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
first_transfer_next = first_transfer_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_buser_next = s_axi_buser_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_bready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
if (s_axi_wlast) begin
// last data word, wait for response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; merge writes
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == S_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_awlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_awlen} << s_axi_awsize) + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE;
end else begin
m_axi_awlen_next = ({1'b0, s_axi_awlen} + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT);
end
m_axi_awsize_next = M_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
state_next = STATE_DATA;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb << (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_WIDTH);
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (s_axi_wlast) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (i = 0; i < S_WORD_WIDTH; i = i + 1) begin
if (s_axi_wstrb[i]) begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH+i*M_WORD_SIZE +: M_WORD_SIZE] = s_axi_wdata[i*M_WORD_SIZE +: M_WORD_SIZE];
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axi_wdata;
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH +: SEGMENT_STRB_WIDTH] = s_axi_wstrb;
end
m_axi_wdata_int = data_next;
m_axi_wstrb_int = strb_next;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
m_axi_wvalid_int = 1'b1;
end
if (burst_reg == 0) begin
m_axi_wvalid_int = 1'b1;
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else begin
// master output is narrower; split writes, and possibly split burst
m_axi_wdata_int = data_reg;
m_axi_wstrb_int = strb_reg;
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
if (s_axi_awsize > M_BURST_SIZE) begin
// need to adjust burst size
if (s_axi_awlen >> (8+M_BURST_SIZE-s_axi_awsize) != 0) begin
// limit burst length to max
master_burst_next = (8'd255 << (s_axi_awsize-M_BURST_SIZE)) | ((~s_axi_awaddr & (8'hff >> (8-s_axi_awsize))) >> M_BURST_SIZE);
end else begin
master_burst_next = (s_axi_awlen << (s_axi_awsize-M_BURST_SIZE)) | ((~s_axi_awaddr & (8'hff >> (8-s_axi_awsize))) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_awlen;
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
data_next = s_axi_wdata;
strb_next = s_axi_wstrb;
wuser_next = s_axi_wuser;
m_axi_wdata_int = s_axi_wdata >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = s_axi_wstrb >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_WIDTH{1'b1}} << master_burst_size_reg);
if (master_burst_reg == 0) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid && !s_axi_awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (m_axi_wready_int_reg) begin
m_axi_wdata_int = data_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = strb_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b1;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_WIDTH{1'b1}} << master_burst_size_reg);
if (master_burst_reg == 0) begin
// burst on master interface finished; transfer response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid && !m_axi_awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid && !m_axi_awvalid;
if (m_axi_bready && m_axi_bvalid) begin
first_transfer_next = 1'b0;
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axi_bresp != 0) begin
s_axi_bresp_next = m_axi_bresp;
end
if (burst_reg >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = (burst_reg << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awaddr_next = addr_reg;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
if (burst_active_reg) begin
// burst on slave interface still active; start new burst
m_axi_awvalid_next = 1'b1;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
end
always @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
wuser_reg <= wuser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
first_transfer_reg <= first_transfer_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_buser_reg <= s_axi_buser_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
end
end
// output datapath logic
reg [M_DATA_WIDTH-1:0] m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] m_axi_wuser_reg = 1'b0;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg [M_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg temp_m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] temp_m_axi_wuser_reg = 1'b0;
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wlast = m_axi_wlast_reg;
assign m_axi_wuser = WUSER_ENABLE ? m_axi_wuser_reg : {WUSER_WIDTH{1'b0}};
assign m_axi_wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready | ~m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
end
endmodule
`resetall

@ -0,0 +1 @@
Subproject commit 7f5e7b50a3d275fcbdae156ed14b7236ad5d7c0b