[examples] Add timer example to simple system

Not particularly useful in the current system, but gives an example of
how to handle interrupts.
This commit is contained in:
Tom Roberts 2020-01-06 13:07:51 +00:00 committed by Tom Roberts
parent 790fab927a
commit 5bb41957ef
9 changed files with 301 additions and 10 deletions

View file

@ -5,8 +5,8 @@ run stand-alone binaries. It contains:
* An Ibex Core
* A single memory for instructions and data
* A basic peripheral to write ASCII output to a file and halt simulation from
software
* A basic peripheral to write ASCII output to a file and halt simulation from software
* A basic timer peripheral capable of generating interrupts based on the RISC-V Machine Timer Registers (see RISC-V Privileged Specification, version 1.11, Section 3.1.10)
* A software framework to build programs for it
## Prerequisites
@ -118,5 +118,9 @@ Pass `-gui` to use the DVE GUI.
|---------------------|--------------------------------------------------------------------------------------------------------|
| 0x20000 | ASCII Out, write ASCII characters here that will get output to the log file |
| 0x20004 | Simulator Halt, write 1 here to halt the simulation |
| 0x30000 | RISCV timer mtime register |
| 0x30004 | RISCV timer mtimeh register |
| 0x30008 | RISCV timer mtimecmp register |
| 0x3000C | RISCV timer mtimecmph register |
| 0x100000 0x1FFFFF | 1 MB memory for instruction and data. Execution starts at 0x100080, exception handler base is 0x100000 |

View file

@ -30,12 +30,16 @@ module ibex_simple_system (
typedef enum {
Ram,
SimCtrl
SimCtrl,
Timer
} bus_device_e;
localparam NrDevices = 2;
localparam NrDevices = 3;
localparam NrHosts = 2;
// interrupts
logic timer_irq;
// host and device signals
logic host_req [NrHosts];
logic host_gnt [NrHosts];
@ -64,6 +68,8 @@ module ibex_simple_system (
assign cfg_device_addr_mask[Ram] = ~32'hFFFFF; // 1 MB
assign cfg_device_addr_base[SimCtrl] = 32'h20000;
assign cfg_device_addr_mask[SimCtrl] = ~32'h3FF; // 1 kB
assign cfg_device_addr_base[Timer] = 32'h30000;
assign cfg_device_addr_mask[Timer] = ~32'h3FF; // 1 kB
`ifdef VERILATOR
@ -152,7 +158,7 @@ module ibex_simple_system (
.data_err_i (host_err[CoreD]),
.irq_software_i (1'b0),
.irq_timer_i (1'b0),
.irq_timer_i (timer_irq),
.irq_external_i (1'b0),
.irq_fast_i (15'b0),
.irq_nm_i (1'b0),
@ -193,6 +199,24 @@ module ibex_simple_system (
.rdata_o (device_rdata[SimCtrl])
);
timer #(
.DataWidth (32),
.AddressWidth (32)
) u_timer (
.clk_i (clk_sys),
.rst_ni (rst_sys_n),
.timer_req_i (device_req[Timer]),
.timer_we_i (device_we[Timer]),
.timer_be_i (device_be[Timer]),
.timer_addr_i (device_addr[Timer]),
.timer_wdata_i (device_wdata[Timer]),
.timer_rvalid_o (device_rvalid[Timer]),
.timer_rdata_o (device_rdata[Timer]),
.timer_err_o (device_err[Timer]),
.timer_intr_o (timer_irq)
);
// Expose the performance counter array so it's easy to access in
// a verilator siumulation
logic [63:0] mhpmcounter_vals [32] /*verilator public_flat*/;

View file

@ -9,6 +9,9 @@
default_exc_handler:
jal x0, simple_exc_handler
timer_handler:
jal x0, simple_timer_handler
reset_handler:
/* set all registers to zero */
mv x1, x0
@ -84,13 +87,15 @@ sleep_loop:
.section .vectors, "ax"
.option norvc;
// All traps go to the same default_exc_handler. Create a landing pad of nops
// as IRQs can come into different addresses.
// All unimplemented interrupts/exceptions go to the default_exc_handler.
.org 0x00
.rept 31
nop
.endr
.rept 7
jal x0, default_exc_handler
.endr
jal x0, timer_handler
.rept 23
jal x0, default_exc_handler
.endr
// reset vector
.org 0x80

View file

@ -139,3 +139,52 @@ void simple_exc_handler(void) {
while(1);
}
volatile uint64_t time_elapsed;
uint64_t time_increment;
inline static void increment_timecmp(uint64_t time_base) {
uint64_t current_time = timer_read();
current_time += time_base;
timecmp_update(current_time);
}
void timer_enable(uint64_t time_base) {
time_elapsed = 0;
time_increment = time_base;
// Set timer values
increment_timecmp(time_base);
// enable timer interrupt
asm volatile("csrs mie, %0\n" : : "r"(0x80));
// enable global interrupt
asm volatile("csrs mstatus, %0\n" : : "r"(0x8));
}
void timer_disable(void) { asm volatile("csrc mie, %0\n" : : "r"(0x80)); }
uint64_t timer_read(void) {
uint32_t current_timeh;
uint32_t current_time;
// check if time overflowed while reading and try again
do {
current_timeh = DEV_READ(TIMER_BASE + TIMER_MTIMEH, 0);
current_time = DEV_READ(TIMER_BASE + TIMER_MTIME, 0);
} while (current_timeh != DEV_READ(TIMER_BASE + TIMER_MTIMEH, 0));
uint64_t final_time = ((uint64_t)current_timeh << 32) | current_time;
return final_time;
}
void timecmp_update(uint64_t new_time) {
DEV_WRITE(TIMER_BASE + TIMER_MTIMECMP, -1);
DEV_WRITE(TIMER_BASE + TIMER_MTIMECMPH, new_time >> 32);
DEV_WRITE(TIMER_BASE + TIMER_MTIMECMP, new_time);
}
uint64_t get_elapsed_time(void) { return time_elapsed; }
void simple_timer_handler(void) __attribute__((interrupt));
void simple_timer_handler(void) {
increment_timecmp(time_increment);
time_elapsed++;
}

View file

@ -55,4 +55,33 @@ void pcount_enable(int enable);
*/
void pcount_reset();
/**
* Enables timer interrupt
*
* @param time_base Number of time ticks to count before interrupt
*/
void timer_enable(uint64_t time_base);
/**
* Returns current mtime value
*/
uint64_t timer_read(void);
/**
* Set a new timer value
*
* @param new_time New value for time
*/
void timecmp_update(uint64_t new_time);
/**
* Disables timer interrupt
*/
void timer_disable(void);
/**
* Returns current global time value
*/
uint64_t get_elapsed_time(void);
#endif

View file

@ -9,4 +9,10 @@
#define SIM_CTRL_OUT 0x0
#define SIM_CTRL_CTRL 0x4
#define TIMER_BASE 0x30000
#define TIMER_MTIME 0x0
#define TIMER_MTIMEH 0x4
#define TIMER_MTIMECMP 0x8
#define TIMER_MTIMECMPH 0xC
#endif // SIMPLE_SYSTEM_REGS_H__

View file

@ -17,5 +17,25 @@ int main(int argc, char **argv) {
pcount_enable(0);
// Enable periodic timer interrupt
// (the actual timebase is a bit meaningless in simulation)
timer_enable(2000);
uint64_t last_elapsed_time = get_elapsed_time();
while (last_elapsed_time <= 4) {
uint64_t cur_time = get_elapsed_time();
if (cur_time != last_elapsed_time) {
last_elapsed_time = cur_time;
if (last_elapsed_time & 1) {
puts("Tick!\n");
} else {
puts("Tock!\n");
}
}
asm volatile("wfi");
}
return 0;
}

151
shared/rtl/timer.sv Normal file
View file

@ -0,0 +1,151 @@
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
// Example memory mapped timer
module timer #(
// Bus data width (must be 32)
parameter int unsigned DataWidth = 32,
// Bus address width
parameter int unsigned AddressWidth = 32
) (
input logic clk_i,
input logic rst_ni,
// Bus interface
input logic timer_req_i,
input logic [AddressWidth-1:0] timer_addr_i,
input logic timer_we_i,
input logic [ DataWidth/8-1:0] timer_be_i,
input logic [ DataWidth-1:0] timer_wdata_i,
output logic timer_rvalid_o,
output logic [ DataWidth-1:0] timer_rdata_o,
output logic timer_err_o,
output logic timer_intr_o
);
// The timers are always 64 bits
localparam int unsigned TW = 64;
// Upper bits of address are decoded into timer_req_i
localparam int unsigned ADDR_OFFSET = 10; // 1kB
// Register map
localparam bit [9:0] MTIME_LOW = 0;
localparam bit [9:0] MTIME_HIGH = 4;
localparam bit [9:0] MTIMECMP_LOW = 8;
localparam bit [9:0] MTIMECMP_HIGH = 12;
logic timer_we;
logic mtime_we, mtimeh_we;
logic mtimecmp_we, mtimcmph_we;
logic [DataWidth-1:0] mtime_wdata, mtimeh_wdata;
logic [DataWidth-1:0] mtimecmp_wdata, mtimecmph_wdata;
logic [TW-1:0] mtime_q, mtime_d, mtime_inc;
logic [TW-1:0] mtimecmp_q, mtimecmp_d;
logic interrupt_q, interrupt_d;
logic error_q, error_d;
logic [DataWidth-1:0] rdata_q, rdata_d;
logic rvalid_q;
// Global write enable for all registers
assign timer_we = timer_req_i & timer_we_i;
// mtime increments every cycle
assign mtime_inc = mtime_q + 64'b1;
// Generate write data based on byte strobes
for (genvar b = 0; b < DataWidth / 8; b++) begin : gen_byte_wdata
assign mtime_wdata[(b*8)+:8] = timer_be_i[b] ? timer_wdata_i[b*8+:8] :
mtime_q[(b*8)+:8];
assign mtimeh_wdata[(b*8)+:8] = timer_be_i[b] ? timer_wdata_i[b*8+:8] :
mtime_q[DataWidth+(b*8)+:8];
assign mtimecmp_wdata[(b*8)+:8] = timer_be_i[b] ? timer_wdata_i[b*8+:8] :
mtimecmp_q[(b*8)+:8];
assign mtimecmph_wdata[(b*8)+:8] = timer_be_i[b] ? timer_wdata_i[b*8+:8] :
mtimecmp_q[DataWidth+(b*8)+:8];
end
// Generate write enables
assign mtime_we = timer_we & (timer_addr_i[ADDR_OFFSET-1:0] == MTIME_LOW);
assign mtimeh_we = timer_we & (timer_addr_i[ADDR_OFFSET-1:0] == MTIME_HIGH);
assign mtimecmp_we = timer_we & (timer_addr_i[ADDR_OFFSET-1:0] == MTIMECMP_LOW);
assign mtimecmph_we = timer_we & (timer_addr_i[ADDR_OFFSET-1:0] == MTIMECMP_HIGH);
// Generate next data
assign mtime_d = {(mtimeh_we ? mtimeh_wdata : mtime_inc[63:32]),
(mtime_we ? mtime_wdata : mtime_inc[31:0])};
assign mtimecmp_d = {(mtimecmph_we ? mtimecmph_wdata : mtimecmp_q[63:32]),
(mtimecmp_we ? mtimecmp_wdata : mtimecmp_q[31:0])};
// Generate registers
always_ff @(posedge clk_i or negedge rst_ni) begin
if (~rst_ni) begin
mtime_q <= 'b0;
end else begin
mtime_q <= mtime_d;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (~rst_ni) begin
mtimecmp_q <= 'b0;
end else if (mtimecmp_we | mtimecmph_we) begin
mtimecmp_q <= mtimecmp_d;
end
end
// interrupt remains set until mtimecmp is written
assign interrupt_d = ((mtime_q >= mtimecmp_q) | interrupt_q) & ~(mtimecmp_we | mtimecmph_we);
always_ff @(posedge clk_i or negedge rst_ni) begin
if (~rst_ni) begin
interrupt_q <= 'b0;
end else begin
interrupt_q <= interrupt_d;
end
end
assign timer_intr_o = interrupt_q;
// Read data
always_comb begin
rdata_d = 'b0;
error_d = 1'b0;
unique case (timer_addr_i[ADDR_OFFSET-1:0])
MTIME_LOW: rdata_d = mtime_q[31:0];
MTIME_HIGH: rdata_d = mtime_q[63:32];
MTIMECMP_LOW: rdata_d = mtimecmp_q[31:0];
MTIMECMP_HIGH: rdata_d = mtimecmp_q[63:32];
default: begin
rdata_d = 'b0;
// Error if no address matched
error_d = 1'b1;
end
endcase
end
// error_q and rdata_q are only valid when rvalid_q is high
always_ff @(posedge clk_i) begin
if (timer_req_i) begin
rdata_q <= rdata_d;
error_q <= error_d;
end
end
assign timer_rdata_o = rdata_q;
// Read data is always valid one cycle after a request
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rvalid_q <= 1'b0;
end else begin
rvalid_q <= timer_req_i;
end
end
assign timer_rvalid_o = rvalid_q;
assign timer_err_o = error_q;
// Assertions
`ASSERT_INIT(param_legal, DataWidth == 32)
endmodule

View file

@ -6,11 +6,14 @@ name: "lowrisc:ibex:sim_shared"
description: "Collection of useful RTL for building simulations"
filesets:
files_sim_sv:
depend:
- lowrisc:prim:assert
files:
- ./rtl/prim_clock_gating.sv
- ./rtl/ram_1p.sv
- ./rtl/bus.sv
- ./rtl/sim/simulator_ctrl.sv
- ./rtl/timer.sv
file_type: systemVerilogSource
targets: