cve2/check_tool_requirements.core
Philipp Wagner 8b42024cd5 Use vendored-in primitives from OpenTitan
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue #893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (https://github.com/olofk/fusesoc/pull/391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  https://github.com/lowRISC/opentitan/issues/2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  https://github.com/lowRISC/opentitan/issues/2310 to get that sorted.
2020-05-27 10:23:15 +01:00

31 lines
934 B
Text

CAPI=2:
# Copyright lowRISC contributors.
# Licensed under the Apache License, Version 2.0, see LICENSE for details.
# SPDX-License-Identifier: Apache-2.0
name: "lowrisc:tool:check_tool_requirements:0.1"
description: "Check tool requirements"
filesets:
files_check_tool_requirements:
files:
- ./util/check_tool_requirements.py : { copyto: util/check_tool_requirements.py }
- ./tool_requirements.py : { copyto: tool_requirements.py }
scripts:
check_tool_requirements:
cmd:
- python3
- util/check_tool_requirements.py
# TODO: Use this syntax once https://github.com/olofk/fusesoc/issues/353 is
# fixed. Remove the filesets from the default target, and also remove the
# copyto.
#filesets:
# - files_check_tool_requirements
targets:
default:
filesets:
- files_check_tool_requirements
hooks:
pre_build:
- tool_verilator ? (check_tool_requirements)