cve2/rtl/cve2_prefetch_buffer.sv
christian-herber-nxp 066ff47261
remove branch predictor (#49)
* remove parameter BranchPredictor

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* Remove references to the removed parameter(s) from examples

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* remove references to the removed parameters from compliance verification

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* remove references to the removed parameters from core lists

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* remove references to the removed parameters from the example configurations

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* Remove references to the removed parameter from documentation

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* Remove related and dead code

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

---------

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>
Co-authored-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>
2023-07-20 16:40:10 +02:00

252 lines
9 KiB
Systemverilog

// Copyright lowRISC contributors.
// Copyright 2018 ETH Zurich and University of Bologna, see also CREDITS.md.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
/**
* Prefetcher Buffer for 32 bit memory interface
*
* Prefetch Buffer that caches instructions. This cuts overly long critical
* paths to the instruction cache.
*/
module cve2_prefetch_buffer #(
) (
input logic clk_i,
input logic rst_ni,
input logic req_i,
input logic branch_i,
input logic [31:0] addr_i,
input logic ready_i,
output logic valid_o,
output logic [31:0] rdata_o,
output logic [31:0] addr_o,
output logic err_o,
output logic err_plus2_o,
// goes to instruction memory / instruction cache
output logic instr_req_o,
input logic instr_gnt_i,
output logic [31:0] instr_addr_o,
input logic [31:0] instr_rdata_i,
input logic instr_err_i,
input logic instr_rvalid_i,
// Prefetch Buffer Status
output logic busy_o
);
localparam int unsigned NUM_REQS = 2;
logic valid_new_req, valid_req;
logic valid_req_d, valid_req_q;
logic discard_req_d, discard_req_q;
logic [NUM_REQS-1:0] rdata_outstanding_n, rdata_outstanding_s, rdata_outstanding_q;
logic [NUM_REQS-1:0] branch_discard_n, branch_discard_s, branch_discard_q;
logic [NUM_REQS-1:0] rdata_outstanding_rev;
logic [31:0] stored_addr_d, stored_addr_q;
logic stored_addr_en;
logic [31:0] fetch_addr_d, fetch_addr_q;
logic fetch_addr_en;
logic [31:0] instr_addr, instr_addr_w_aligned;
logic fifo_valid;
logic [31:0] fifo_addr;
logic fifo_ready;
logic fifo_clear;
logic [NUM_REQS-1:0] fifo_busy;
logic valid_raw;
////////////////////////////
// Prefetch buffer status //
////////////////////////////
assign busy_o = (|rdata_outstanding_q) | instr_req_o;
//////////////////////////////////////////////
// Fetch fifo - consumes addresses and data //
//////////////////////////////////////////////
// A branch will invalidate any previously fetched instructions.
// Note that the FENCE.I instruction relies on this flushing behaviour on branch. If it is
// altered the FENCE.I implementation may require changes.
assign fifo_clear = branch_i;
// Reversed version of rdata_outstanding_q which can be overlaid with fifo fill state
for (genvar i = 0; i < NUM_REQS; i++) begin : gen_rd_rev
assign rdata_outstanding_rev[i] = rdata_outstanding_q[NUM_REQS-1-i];
end
// The fifo is ready to accept a new request if it is not full - including space reserved for
// requests already outstanding.
// Overlay the fifo fill state with the outstanding requests to see if there is space.
assign fifo_ready = ~&(fifo_busy | rdata_outstanding_rev);
cve2_fetch_fifo #(
.NUM_REQS (NUM_REQS)
) fifo_i (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.clear_i ( fifo_clear ),
.busy_o ( fifo_busy ),
.in_valid_i ( fifo_valid ),
.in_addr_i ( fifo_addr ),
.in_rdata_i ( instr_rdata_i ),
.in_err_i ( instr_err_i ),
.out_valid_o ( valid_raw ),
.out_ready_i ( ready_i ),
.out_rdata_o ( rdata_o ),
.out_addr_o ( addr_o ),
.out_err_o ( err_o ),
.out_err_plus2_o ( err_plus2_o )
);
//////////////
// Requests //
//////////////
// Make a new request any time there is space in the FIFO, and space in the request queue
assign valid_new_req = req_i & (fifo_ready | branch_i) &
~rdata_outstanding_q[NUM_REQS-1];
assign valid_req = valid_req_q | valid_new_req;
// Hold the request stable for requests that didn't get granted
assign valid_req_d = valid_req & ~instr_gnt_i;
// Record whether an outstanding bus request is cancelled by a branch
assign discard_req_d = valid_req_q & (branch_i | discard_req_q);
////////////////
// Fetch addr //
////////////////
// Two addresses are tracked in the prefetch buffer:
// 1. stored_addr_q - This is the address issued on the bus. It stays stable until
// the request is granted.
// 2. fetch_addr_q - This is our next address to fetch from. It is updated on branches to
// capture the new address, and then for each new request issued.
// A third address is tracked in the fetch FIFO itself:
// 3. instr_addr_q - This is the address at the head of the FIFO, efectively our oldest fetched
// address. This address is updated on branches, and does its own increment
// each time the FIFO is popped.
// 1. stored_addr_q
// Only update stored_addr_q for new ungranted requests
assign stored_addr_en = valid_new_req & ~valid_req_q & ~instr_gnt_i;
// Store whatever address was issued on the bus
assign stored_addr_d = instr_addr;
// CPU resets with a branch, so no need to reset these addresses
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
stored_addr_q <= '0;
end else if (stored_addr_en) begin
stored_addr_q <= stored_addr_d;
end
end
// 2. fetch_addr_q
// Update on a branch or as soon as a request is issued
assign fetch_addr_en = branch_i | (valid_new_req & ~valid_req_q);
assign fetch_addr_d = (branch_i ? addr_i :
{fetch_addr_q[31:2], 2'b00}) +
// Current address + 4
{{29{1'b0}},(valid_new_req & ~valid_req_q),2'b00};
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
fetch_addr_q <= '0;
end else if (fetch_addr_en) begin
fetch_addr_q <= fetch_addr_d;
end
end
// Address mux
assign instr_addr = valid_req_q ? stored_addr_q :
branch_i ? addr_i :
fetch_addr_q;
assign instr_addr_w_aligned = {instr_addr[31:2], 2'b00};
///////////////////////////////
// Request outstanding queue //
///////////////////////////////
for (genvar i = 0; i < NUM_REQS; i++) begin : g_outstanding_reqs
// Request 0 (always the oldest outstanding request)
if (i == 0) begin : g_req0
// A request becomes outstanding once granted, and is cleared once the rvalid is received.
// Outstanding requests shift down the queue towards entry 0.
assign rdata_outstanding_n[i] = (valid_req & instr_gnt_i) |
rdata_outstanding_q[i];
// If a branch is received at any point while a request is outstanding, it must be tracked
// to ensure we discard the data once received
assign branch_discard_n[i] = (valid_req & instr_gnt_i & discard_req_d) |
(branch_i & rdata_outstanding_q[i]) |
branch_discard_q[i];
end else begin : g_reqtop
// Entries > 0 consider the FIFO fill state to calculate their next state (by checking
// whether the previous entry is valid)
assign rdata_outstanding_n[i] = (valid_req & instr_gnt_i &
rdata_outstanding_q[i-1]) |
rdata_outstanding_q[i];
assign branch_discard_n[i] = (valid_req & instr_gnt_i & discard_req_d &
rdata_outstanding_q[i-1]) |
(branch_i & rdata_outstanding_q[i]) |
branch_discard_q[i];
end
end
// Shift the entries down on each instr_rvalid_i
assign rdata_outstanding_s = instr_rvalid_i ? {1'b0,rdata_outstanding_n[NUM_REQS-1:1]} :
rdata_outstanding_n;
assign branch_discard_s = instr_rvalid_i ? {1'b0,branch_discard_n[NUM_REQS-1:1]} :
branch_discard_n;
// Push a new entry to the FIFO once complete (and not cancelled by a branch)
assign fifo_valid = instr_rvalid_i & ~branch_discard_q[0];
assign fifo_addr = addr_i;
///////////////
// Registers //
///////////////
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
valid_req_q <= 1'b0;
discard_req_q <= 1'b0;
rdata_outstanding_q <= 'b0;
branch_discard_q <= 'b0;
end else begin
valid_req_q <= valid_req_d;
discard_req_q <= discard_req_d;
rdata_outstanding_q <= rdata_outstanding_s;
branch_discard_q <= branch_discard_s;
end
end
/////////////
// Outputs //
/////////////
assign instr_req_o = valid_req;
assign instr_addr_o = instr_addr_w_aligned;
assign valid_o = valid_raw;
endmodule