[EIS] Dense Text Embedding task type integration (#129847)

This commit is contained in:
Tim Grein 2025-06-24 21:38:16 +02:00 committed by GitHub
parent 0e2362432c
commit 3b51dd568c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
26 changed files with 1860 additions and 266 deletions

View file

@ -206,6 +206,7 @@ public class TransportVersions {
public static final TransportVersion RANDOM_SAMPLER_QUERY_BUILDER_8_19 = def(8_841_0_56);
public static final TransportVersion ML_INFERENCE_SAGEMAKER_ELASTIC_8_19 = def(8_841_0_57);
public static final TransportVersion SPARSE_VECTOR_FIELD_PRUNING_OPTIONS_8_19 = def(8_841_0_58);
public static final TransportVersion ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED_8_19 = def(8_841_0_59);
public static final TransportVersion V_9_0_0 = def(9_000_0_09);
public static final TransportVersion INITIAL_ELASTICSEARCH_9_0_1 = def(9_000_0_10);
public static final TransportVersion INITIAL_ELASTICSEARCH_9_0_2 = def(9_000_0_11);
@ -318,6 +319,7 @@ public class TransportVersions {
public static final TransportVersion ML_INFERENCE_SAGEMAKER_ELASTIC = def(9_106_0_00);
public static final TransportVersion SPARSE_VECTOR_FIELD_PRUNING_OPTIONS = def(9_107_0_00);
public static final TransportVersion CLUSTER_STATE_PROJECTS_SETTINGS = def(9_108_0_00);
public static final TransportVersion ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED = def(9_109_00_0);
/*
* STOP! READ THIS FIRST! No, really,

View file

@ -33,7 +33,7 @@ public class InferenceGetModelsWithElasticInferenceServiceIT extends BaseMockEIS
var allModels = getAllModels();
var chatCompletionModels = getModels("_all", TaskType.CHAT_COMPLETION);
assertThat(allModels, hasSize(6));
assertThat(allModels, hasSize(7));
assertThat(chatCompletionModels, hasSize(1));
for (var model : chatCompletionModels) {
@ -42,6 +42,7 @@ public class InferenceGetModelsWithElasticInferenceServiceIT extends BaseMockEIS
assertInferenceIdTaskType(allModels, ".rainbow-sprinkles-elastic", TaskType.CHAT_COMPLETION);
assertInferenceIdTaskType(allModels, ".elser-v2-elastic", TaskType.SPARSE_EMBEDDING);
assertInferenceIdTaskType(allModels, ".multilingual-embed-v1-elastic", TaskType.TEXT_EMBEDDING);
assertInferenceIdTaskType(allModels, ".rerank-v1-elastic", TaskType.RERANK);
}

View file

@ -20,6 +20,7 @@ import java.util.Map;
import static org.elasticsearch.xpack.inference.InferenceBaseRestTest.assertStatusOkOrCreated;
import static org.hamcrest.Matchers.containsInAnyOrder;
import static org.hamcrest.Matchers.equalTo;
public class InferenceGetServicesIT extends BaseMockEISAuthServerTest {
@ -76,16 +77,21 @@ public class InferenceGetServicesIT extends BaseMockEISAuthServerTest {
}
public void testGetServicesWithTextEmbeddingTaskType() throws IOException {
List<Object> services = getServices(TaskType.TEXT_EMBEDDING);
assertThat(services.size(), equalTo(18));
assertThat(
providersFor(TaskType.TEXT_EMBEDDING),
containsInAnyOrder(
List.of(
"alibabacloud-ai-search",
"amazonbedrock",
"amazon_sagemaker",
"azureaistudio",
"azureopenai",
"cohere",
"custom",
"elastic",
"elasticsearch",
"googleaistudio",
"googlevertexai",
@ -95,8 +101,7 @@ public class InferenceGetServicesIT extends BaseMockEISAuthServerTest {
"openai",
"text_embedding_test_service",
"voyageai",
"watsonxai",
"amazon_sagemaker"
"watsonxai"
).toArray()
)
);

View file

@ -43,6 +43,10 @@ public class MockElasticInferenceServiceAuthorizationServer implements TestRule
"task_types": ["embed/text/sparse"]
},
{
"model_name": "multilingual-embed-v1",
"task_types": ["embed/text/dense"]
},
{
"model_name": "rerank-v1",
"task_types": ["rerank/text/text-similarity"]
}

View file

@ -11,6 +11,7 @@ import org.elasticsearch.ResourceNotFoundException;
import org.elasticsearch.action.support.PlainActionFuture;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.core.TimeValue;
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
import org.elasticsearch.inference.InferenceService;
import org.elasticsearch.inference.MinimalServiceSettings;
import org.elasticsearch.inference.Model;
@ -43,6 +44,7 @@ import static org.elasticsearch.xpack.inference.Utils.mockClusterServiceEmpty;
import static org.elasticsearch.xpack.inference.external.http.Utils.getUrl;
import static org.elasticsearch.xpack.inference.services.ServiceComponentsTests.createWithEmptySettings;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.Matchers.containsInAnyOrder;
import static org.mockito.Mockito.mock;
public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
@ -190,13 +192,17 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
String responseJson = """
{
"models": [
{
"model_name": "elser-v2",
"task_types": ["embed/text/sparse"]
},
{
"model_name": "rainbow-sprinkles",
"task_types": ["chat"]
},
{
"model_name": "elser-v2",
"task_types": ["embed/text/sparse"]
"model_name": "multilingual-embed-v1",
"task_types": ["embed/text/dense"]
},
{
"model_name": "rerank-v1",
@ -214,36 +220,48 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
assertThat(service.supportedStreamingTasks(), is(EnumSet.of(TaskType.CHAT_COMPLETION)));
assertThat(
service.defaultConfigIds(),
is(
List.of(
new InferenceService.DefaultConfigId(
".elser-v2-elastic",
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
service
containsInAnyOrder(
new InferenceService.DefaultConfigId(
".elser-v2-elastic",
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
service
),
new InferenceService.DefaultConfigId(
".rainbow-sprinkles-elastic",
MinimalServiceSettings.chatCompletion(ElasticInferenceService.NAME),
service
),
new InferenceService.DefaultConfigId(
".multilingual-embed-v1-elastic",
MinimalServiceSettings.textEmbedding(
ElasticInferenceService.NAME,
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
DenseVectorFieldMapper.ElementType.FLOAT
),
new InferenceService.DefaultConfigId(
".rainbow-sprinkles-elastic",
MinimalServiceSettings.chatCompletion(ElasticInferenceService.NAME),
service
),
new InferenceService.DefaultConfigId(
".rerank-v1-elastic",
MinimalServiceSettings.rerank(ElasticInferenceService.NAME),
service
)
service
),
new InferenceService.DefaultConfigId(
".rerank-v1-elastic",
MinimalServiceSettings.rerank(ElasticInferenceService.NAME),
service
)
)
);
assertThat(
service.supportedTaskTypes(),
is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.RERANK))
is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.RERANK, TaskType.TEXT_EMBEDDING))
);
PlainActionFuture<List<Model>> listener = new PlainActionFuture<>();
service.defaultConfigs(listener);
assertThat(listener.actionGet(TIMEOUT).get(0).getConfigurations().getInferenceEntityId(), is(".elser-v2-elastic"));
assertThat(listener.actionGet(TIMEOUT).get(1).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
assertThat(listener.actionGet(TIMEOUT).get(2).getConfigurations().getInferenceEntityId(), is(".rerank-v1-elastic"));
assertThat(
listener.actionGet(TIMEOUT).get(1).getConfigurations().getInferenceEntityId(),
is(".multilingual-embed-v1-elastic")
);
assertThat(listener.actionGet(TIMEOUT).get(2).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
assertThat(listener.actionGet(TIMEOUT).get(3).getConfigurations().getInferenceEntityId(), is(".rerank-v1-elastic"));
var getModelListener = new PlainActionFuture<UnparsedModel>();
// persists the default endpoints
@ -265,6 +283,10 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
{
"model_name": "rerank-v1",
"task_types": ["rerank/text/text-similarity"]
},
{
"model_name": "multilingual-embed-v1",
"task_types": ["embed/text/dense"]
}
]
}
@ -278,22 +300,33 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
assertThat(service.supportedStreamingTasks(), is(EnumSet.noneOf(TaskType.class)));
assertThat(
service.defaultConfigIds(),
is(
List.of(
new InferenceService.DefaultConfigId(
".elser-v2-elastic",
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
service
containsInAnyOrder(
new InferenceService.DefaultConfigId(
".elser-v2-elastic",
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
service
),
new InferenceService.DefaultConfigId(
".multilingual-embed-v1-elastic",
MinimalServiceSettings.textEmbedding(
ElasticInferenceService.NAME,
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
DenseVectorFieldMapper.ElementType.FLOAT
),
new InferenceService.DefaultConfigId(
".rerank-v1-elastic",
MinimalServiceSettings.rerank(ElasticInferenceService.NAME),
service
)
service
),
new InferenceService.DefaultConfigId(
".rerank-v1-elastic",
MinimalServiceSettings.rerank(ElasticInferenceService.NAME),
service
)
)
);
assertThat(service.supportedTaskTypes(), is(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.RERANK)));
assertThat(
service.supportedTaskTypes(),
is(EnumSet.of(TaskType.TEXT_EMBEDDING, TaskType.SPARSE_EMBEDDING, TaskType.RERANK))
);
var getModelListener = new PlainActionFuture<UnparsedModel>();
modelRegistry.getModel(".rainbow-sprinkles-elastic", getModelListener);

View file

@ -0,0 +1,103 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.external.response.elastic;
import org.elasticsearch.common.xcontent.XContentParserUtils;
import org.elasticsearch.xcontent.ConstructingObjectParser;
import org.elasticsearch.xcontent.ParseField;
import org.elasticsearch.xcontent.XContentFactory;
import org.elasticsearch.xcontent.XContentParserConfiguration;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
import org.elasticsearch.xpack.inference.external.http.HttpResult;
import org.elasticsearch.xpack.inference.external.request.Request;
import java.io.IOException;
import java.util.List;
import static org.elasticsearch.xcontent.ConstructingObjectParser.constructorArg;
public class ElasticInferenceServiceDenseTextEmbeddingsResponseEntity {
/**
* Parses the Elastic Inference Service Dense Text Embeddings response.
*
* For a request like:
*
* <pre>
* <code>
* {
* "inputs": ["Embed this text", "Embed this text, too"]
* }
* </code>
* </pre>
*
* The response would look like:
*
* <pre>
* <code>
* {
* "data": [
* [
* 2.1259406,
* 1.7073475,
* 0.9020516
* ],
* (...)
* ],
* "meta": {
* "usage": {...}
* }
* }
* </code>
* </pre>
*/
public static TextEmbeddingFloatResults fromResponse(Request request, HttpResult response) throws IOException {
try (var p = XContentFactory.xContent(XContentType.JSON).createParser(XContentParserConfiguration.EMPTY, response.body())) {
return EmbeddingFloatResult.PARSER.apply(p, null).toTextEmbeddingFloatResults();
}
}
public record EmbeddingFloatResult(List<EmbeddingFloatResultEntry> embeddingResults) {
@SuppressWarnings("unchecked")
public static final ConstructingObjectParser<EmbeddingFloatResult, Void> PARSER = new ConstructingObjectParser<>(
EmbeddingFloatResult.class.getSimpleName(),
true,
args -> new EmbeddingFloatResult((List<EmbeddingFloatResultEntry>) args[0])
);
static {
// Custom field declaration to handle array of arrays format
PARSER.declareField(constructorArg(), (parser, context) -> {
return XContentParserUtils.parseList(parser, (p, index) -> {
List<Float> embedding = XContentParserUtils.parseList(p, (innerParser, innerIndex) -> innerParser.floatValue());
return EmbeddingFloatResultEntry.fromFloatArray(embedding);
});
}, new ParseField("data"), org.elasticsearch.xcontent.ObjectParser.ValueType.OBJECT_ARRAY);
}
public TextEmbeddingFloatResults toTextEmbeddingFloatResults() {
return new TextEmbeddingFloatResults(
embeddingResults.stream().map(entry -> TextEmbeddingFloatResults.Embedding.of(entry.embedding)).toList()
);
}
}
/**
* Represents a single embedding entry in the response.
* For the Elastic Inference Service, each entry is just an array of floats (no wrapper object).
* This is a simpler wrapper that just holds the float array.
*/
public record EmbeddingFloatResultEntry(List<Float> embedding) {
public static EmbeddingFloatResultEntry fromFloatArray(List<Float> floats) {
return new EmbeddingFloatResultEntry(floats);
}
}
private ElasticInferenceServiceDenseTextEmbeddingsResponseEntity() {}
}

View file

@ -16,6 +16,7 @@ import org.elasticsearch.common.ValidationException;
import org.elasticsearch.common.util.LazyInitializable;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.core.TimeValue;
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
import org.elasticsearch.inference.ChunkedInference;
import org.elasticsearch.inference.ChunkingSettings;
import org.elasticsearch.inference.EmptySecretSettings;
@ -28,6 +29,7 @@ import org.elasticsearch.inference.Model;
import org.elasticsearch.inference.ModelConfigurations;
import org.elasticsearch.inference.ModelSecrets;
import org.elasticsearch.inference.SettingsConfiguration;
import org.elasticsearch.inference.SimilarityMeasure;
import org.elasticsearch.inference.TaskType;
import org.elasticsearch.inference.configuration.SettingsConfigurationFieldType;
import org.elasticsearch.rest.RestStatus;
@ -54,6 +56,8 @@ import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticI
import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticInferenceServiceAuthorizationRequestHandler;
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionModel;
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionServiceSettings;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsServiceSettings;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModel;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankServiceSettings;
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
@ -84,15 +88,20 @@ public class ElasticInferenceService extends SenderService {
public static final String NAME = "elastic";
public static final String ELASTIC_INFERENCE_SERVICE_IDENTIFIER = "Elastic Inference Service";
public static final int SPARSE_TEXT_EMBEDDING_MAX_BATCH_SIZE = 512;
public static final Integer DENSE_TEXT_EMBEDDINGS_DIMENSIONS = 1024;
public static final Integer SPARSE_TEXT_EMBEDDING_MAX_BATCH_SIZE = 512;
private static final EnumSet<TaskType> IMPLEMENTED_TASK_TYPES = EnumSet.of(
TaskType.SPARSE_EMBEDDING,
TaskType.CHAT_COMPLETION,
TaskType.RERANK
TaskType.RERANK,
TaskType.TEXT_EMBEDDING
);
private static final String SERVICE_NAME = "Elastic";
// TODO: check with team, what makes the most sense
private static final Integer DENSE_TEXT_EMBEDDINGS_MAX_BATCH_SIZE = 32;
// rainbow-sprinkles
static final String DEFAULT_CHAT_COMPLETION_MODEL_ID_V1 = "rainbow-sprinkles";
static final String DEFAULT_CHAT_COMPLETION_ENDPOINT_ID_V1 = defaultEndpointId(DEFAULT_CHAT_COMPLETION_MODEL_ID_V1);
@ -101,6 +110,10 @@ public class ElasticInferenceService extends SenderService {
static final String DEFAULT_ELSER_MODEL_ID_V2 = "elser-v2";
static final String DEFAULT_ELSER_ENDPOINT_ID_V2 = defaultEndpointId(DEFAULT_ELSER_MODEL_ID_V2);
// multilingual-text-embed
static final String DEFAULT_MULTILINGUAL_EMBED_MODEL_ID = "multilingual-embed-v1";
static final String DEFAULT_MULTILINGUAL_EMBED_ENDPOINT_ID = defaultEndpointId(DEFAULT_MULTILINGUAL_EMBED_MODEL_ID);
// rerank-v1
static final String DEFAULT_RERANK_MODEL_ID_V1 = "rerank-v1";
static final String DEFAULT_RERANK_ENDPOINT_ID_V1 = defaultEndpointId(DEFAULT_RERANK_MODEL_ID_V1);
@ -108,7 +121,11 @@ public class ElasticInferenceService extends SenderService {
/**
* The task types that the {@link InferenceAction.Request} can accept.
*/
private static final EnumSet<TaskType> SUPPORTED_INFERENCE_ACTION_TASK_TYPES = EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.RERANK);
private static final EnumSet<TaskType> SUPPORTED_INFERENCE_ACTION_TASK_TYPES = EnumSet.of(
TaskType.SPARSE_EMBEDDING,
TaskType.RERANK,
TaskType.TEXT_EMBEDDING
);
public static String defaultEndpointId(String modelId) {
return Strings.format(".%s-elastic", modelId);
@ -171,6 +188,32 @@ public class ElasticInferenceService extends SenderService {
),
MinimalServiceSettings.sparseEmbedding(NAME)
),
DEFAULT_MULTILINGUAL_EMBED_MODEL_ID,
new DefaultModelConfig(
new ElasticInferenceServiceDenseTextEmbeddingsModel(
DEFAULT_MULTILINGUAL_EMBED_ENDPOINT_ID,
TaskType.TEXT_EMBEDDING,
NAME,
new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
DEFAULT_MULTILINGUAL_EMBED_MODEL_ID,
defaultDenseTextEmbeddingsSimilarity(),
null,
null,
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings.DEFAULT_RATE_LIMIT_SETTINGS
),
EmptyTaskSettings.INSTANCE,
EmptySecretSettings.INSTANCE,
elasticInferenceServiceComponents,
ChunkingSettingsBuilder.DEFAULT_SETTINGS
),
MinimalServiceSettings.textEmbedding(
NAME,
DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
defaultDenseTextEmbeddingsSimilarity(),
DenseVectorFieldMapper.ElementType.FLOAT
)
),
DEFAULT_RERANK_MODEL_ID_V1,
new DefaultModelConfig(
new ElasticInferenceServiceRerankModel(
@ -310,6 +353,23 @@ public class ElasticInferenceService extends SenderService {
TimeValue timeout,
ActionListener<List<ChunkedInference>> listener
) {
if (model instanceof ElasticInferenceServiceDenseTextEmbeddingsModel denseTextEmbeddingsModel) {
var actionCreator = new ElasticInferenceServiceActionCreator(getSender(), getServiceComponents(), getCurrentTraceInfo());
List<EmbeddingRequestChunker.BatchRequestAndListener> batchedRequests = new EmbeddingRequestChunker<>(
inputs.getInputs(),
DENSE_TEXT_EMBEDDINGS_MAX_BATCH_SIZE,
denseTextEmbeddingsModel.getConfigurations().getChunkingSettings()
).batchRequestsWithListeners(listener);
for (var request : batchedRequests) {
var action = denseTextEmbeddingsModel.accept(actionCreator, taskSettings);
action.execute(EmbeddingsInput.fromStrings(request.batch().inputs().get(), inputType), timeout, request.listener());
}
return;
}
if (model instanceof ElasticInferenceServiceSparseEmbeddingsModel sparseTextEmbeddingsModel) {
var actionCreator = new ElasticInferenceServiceActionCreator(getSender(), getServiceComponents(), getCurrentTraceInfo());
@ -348,7 +408,7 @@ public class ElasticInferenceService extends SenderService {
Map<String, Object> taskSettingsMap = removeFromMapOrDefaultEmpty(config, ModelConfigurations.TASK_SETTINGS);
ChunkingSettings chunkingSettings = null;
if (TaskType.SPARSE_EMBEDDING.equals(taskType)) {
if (TaskType.SPARSE_EMBEDDING.equals(taskType) || TaskType.TEXT_EMBEDDING.equals(taskType)) {
chunkingSettings = ChunkingSettingsBuilder.fromMap(
removeFromMapOrDefaultEmpty(config, ModelConfigurations.CHUNKING_SETTINGS)
);
@ -359,11 +419,11 @@ public class ElasticInferenceService extends SenderService {
taskType,
serviceSettingsMap,
taskSettingsMap,
chunkingSettings,
serviceSettingsMap,
elasticInferenceServiceComponents,
TaskType.unsupportedTaskTypeErrorMsg(taskType, NAME),
ConfigurationParseContext.REQUEST,
chunkingSettings
ConfigurationParseContext.REQUEST
);
throwIfNotEmptyMap(config, NAME);
@ -396,11 +456,11 @@ public class ElasticInferenceService extends SenderService {
TaskType taskType,
Map<String, Object> serviceSettings,
Map<String, Object> taskSettings,
ChunkingSettings chunkingSettings,
@Nullable Map<String, Object> secretSettings,
ElasticInferenceServiceComponents elasticInferenceServiceComponents,
String failureMessage,
ConfigurationParseContext context,
ChunkingSettings chunkingSettings
ConfigurationParseContext context
) {
return switch (taskType) {
case SPARSE_EMBEDDING -> new ElasticInferenceServiceSparseEmbeddingsModel(
@ -434,6 +494,17 @@ public class ElasticInferenceService extends SenderService {
elasticInferenceServiceComponents,
context
);
case TEXT_EMBEDDING -> new ElasticInferenceServiceDenseTextEmbeddingsModel(
inferenceEntityId,
taskType,
NAME,
serviceSettings,
taskSettings,
secretSettings,
elasticInferenceServiceComponents,
context,
chunkingSettings
);
default -> throw new ElasticsearchStatusException(failureMessage, RestStatus.BAD_REQUEST);
};
}
@ -450,7 +521,7 @@ public class ElasticInferenceService extends SenderService {
Map<String, Object> secretSettingsMap = removeFromMapOrDefaultEmpty(secrets, ModelSecrets.SECRET_SETTINGS);
ChunkingSettings chunkingSettings = null;
if (TaskType.SPARSE_EMBEDDING.equals(taskType)) {
if (TaskType.SPARSE_EMBEDDING.equals(taskType) || TaskType.TEXT_EMBEDDING.equals(taskType)) {
chunkingSettings = ChunkingSettingsBuilder.fromMap(removeFromMap(config, ModelConfigurations.CHUNKING_SETTINGS));
}
@ -459,9 +530,9 @@ public class ElasticInferenceService extends SenderService {
taskType,
serviceSettingsMap,
taskSettingsMap,
chunkingSettings,
secretSettingsMap,
parsePersistedConfigErrorMsg(inferenceEntityId, NAME),
chunkingSettings
parsePersistedConfigErrorMsg(inferenceEntityId, NAME)
);
}
@ -471,7 +542,7 @@ public class ElasticInferenceService extends SenderService {
Map<String, Object> taskSettingsMap = removeFromMapOrDefaultEmpty(config, ModelConfigurations.TASK_SETTINGS);
ChunkingSettings chunkingSettings = null;
if (TaskType.SPARSE_EMBEDDING.equals(taskType)) {
if (TaskType.SPARSE_EMBEDDING.equals(taskType) || TaskType.TEXT_EMBEDDING.equals(taskType)) {
chunkingSettings = ChunkingSettingsBuilder.fromMap(removeFromMap(config, ModelConfigurations.CHUNKING_SETTINGS));
}
@ -480,9 +551,9 @@ public class ElasticInferenceService extends SenderService {
taskType,
serviceSettingsMap,
taskSettingsMap,
chunkingSettings,
null,
parsePersistedConfigErrorMsg(inferenceEntityId, NAME),
chunkingSettings
parsePersistedConfigErrorMsg(inferenceEntityId, NAME)
);
}
@ -496,23 +567,51 @@ public class ElasticInferenceService extends SenderService {
TaskType taskType,
Map<String, Object> serviceSettings,
Map<String, Object> taskSettings,
ChunkingSettings chunkingSettings,
@Nullable Map<String, Object> secretSettings,
String failureMessage,
ChunkingSettings chunkingSettings
String failureMessage
) {
return createModel(
inferenceEntityId,
taskType,
serviceSettings,
taskSettings,
chunkingSettings,
secretSettings,
elasticInferenceServiceComponents,
failureMessage,
ConfigurationParseContext.PERSISTENT,
chunkingSettings
ConfigurationParseContext.PERSISTENT
);
}
@Override
public Model updateModelWithEmbeddingDetails(Model model, int embeddingSize) {
if (model instanceof ElasticInferenceServiceDenseTextEmbeddingsModel embeddingsModel) {
var serviceSettings = embeddingsModel.getServiceSettings();
var modelId = serviceSettings.modelId();
var similarityFromModel = serviceSettings.similarity();
var similarityToUse = similarityFromModel == null ? defaultDenseTextEmbeddingsSimilarity() : similarityFromModel;
var maxInputTokens = serviceSettings.maxInputTokens();
var updateServiceSettings = new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
similarityToUse,
embeddingSize,
maxInputTokens,
serviceSettings.rateLimitSettings()
);
return new ElasticInferenceServiceDenseTextEmbeddingsModel(embeddingsModel, updateServiceSettings);
} else {
throw ServiceUtils.invalidModelTypeForUpdateModelWithEmbeddingDetails(model.getClass());
}
}
public static SimilarityMeasure defaultDenseTextEmbeddingsSimilarity() {
// TODO: double-check
return SimilarityMeasure.COSINE;
}
private static List<ChunkedInference> translateToChunkedResults(InferenceInputs inputs, InferenceServiceResults inferenceResults) {
if (inferenceResults instanceof SparseEmbeddingResults sparseEmbeddingResults) {
var inputsAsList = EmbeddingsInput.of(inputs).getStringInputs();
@ -550,8 +649,9 @@ public class ElasticInferenceService extends SenderService {
configurationMap.put(
MODEL_ID,
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.RERANK))
.setDescription("The name of the model to use for the inference task.")
new SettingsConfiguration.Builder(
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.RERANK, TaskType.TEXT_EMBEDDING)
).setDescription("The name of the model to use for the inference task.")
.setLabel("Model ID")
.setRequired(true)
.setSensitive(false)
@ -562,7 +662,7 @@ public class ElasticInferenceService extends SenderService {
configurationMap.put(
MAX_INPUT_TOKENS,
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING)).setDescription(
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.TEXT_EMBEDDING)).setDescription(
"Allows you to specify the maximum number of tokens per input."
)
.setLabel("Maximum Input Tokens")
@ -575,7 +675,7 @@ public class ElasticInferenceService extends SenderService {
configurationMap.putAll(
RateLimitSettings.toSettingsConfiguration(
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.RERANK)
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.RERANK, TaskType.TEXT_EMBEDDING)
)
);

View file

@ -11,14 +11,18 @@ import org.elasticsearch.common.Strings;
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
import org.elasticsearch.xpack.inference.external.action.SenderExecutableAction;
import org.elasticsearch.xpack.inference.external.http.retry.ResponseHandler;
import org.elasticsearch.xpack.inference.external.http.sender.EmbeddingsInput;
import org.elasticsearch.xpack.inference.external.http.sender.GenericRequestManager;
import org.elasticsearch.xpack.inference.external.http.sender.QueryAndDocsInputs;
import org.elasticsearch.xpack.inference.external.http.sender.Sender;
import org.elasticsearch.xpack.inference.external.request.elastic.rerank.ElasticInferenceServiceRerankRequest;
import org.elasticsearch.xpack.inference.external.response.elastic.ElasticInferenceServiceDenseTextEmbeddingsResponseEntity;
import org.elasticsearch.xpack.inference.external.response.elastic.ElasticInferenceServiceRerankResponseEntity;
import org.elasticsearch.xpack.inference.services.ServiceComponents;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceResponseHandler;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceSparseEmbeddingsRequestManager;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceDenseTextEmbeddingsRequest;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRerankRequest;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModel;
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
@ -31,17 +35,22 @@ import static org.elasticsearch.xpack.inference.services.elastic.request.Elastic
public class ElasticInferenceServiceActionCreator implements ElasticInferenceServiceActionVisitor {
private final Sender sender;
private final ServiceComponents serviceComponents;
private final TraceContext traceContext;
static final ResponseHandler DENSE_TEXT_EMBEDDINGS_HANDLER = new ElasticInferenceServiceResponseHandler(
"elastic dense text embedding",
ElasticInferenceServiceDenseTextEmbeddingsResponseEntity::fromResponse
);
static final ResponseHandler RERANK_HANDLER = new ElasticInferenceServiceResponseHandler(
"elastic rerank",
(request, response) -> ElasticInferenceServiceRerankResponseEntity.fromResponse(response)
);
private final Sender sender;
private final ServiceComponents serviceComponents;
private final TraceContext traceContext;
public ElasticInferenceServiceActionCreator(Sender sender, ServiceComponents serviceComponents, TraceContext traceContext) {
this.sender = Objects.requireNonNull(sender);
this.serviceComponents = Objects.requireNonNull(serviceComponents);
@ -77,4 +86,26 @@ public class ElasticInferenceServiceActionCreator implements ElasticInferenceSer
var errorMessage = constructFailedToSendRequestMessage(Strings.format("%s rerank", ELASTIC_INFERENCE_SERVICE_IDENTIFIER));
return new SenderExecutableAction(sender, requestManager, errorMessage);
}
@Override
public ExecutableAction create(ElasticInferenceServiceDenseTextEmbeddingsModel model) {
var threadPool = serviceComponents.threadPool();
var manager = new GenericRequestManager<>(
threadPool,
model,
DENSE_TEXT_EMBEDDINGS_HANDLER,
(embeddingsInput) -> new ElasticInferenceServiceDenseTextEmbeddingsRequest(
model,
embeddingsInput.getStringInputs(),
traceContext,
extractRequestMetadataFromThreadContext(threadPool.getThreadContext()),
embeddingsInput.getInputType()
),
EmbeddingsInput.class
);
var failedToSendRequestErrorMessage = constructFailedToSendRequestMessage("Elastic dense text embeddings");
return new SenderExecutableAction(sender, manager, failedToSendRequestErrorMessage);
}
}

View file

@ -8,6 +8,7 @@
package org.elasticsearch.xpack.inference.services.elastic.action;
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModel;
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
@ -17,4 +18,5 @@ public interface ElasticInferenceServiceActionVisitor {
ExecutableAction create(ElasticInferenceServiceRerankModel model);
ExecutableAction create(ElasticInferenceServiceDenseTextEmbeddingsModel model);
}

View file

@ -0,0 +1,116 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
import org.elasticsearch.ElasticsearchStatusException;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.inference.ChunkingSettings;
import org.elasticsearch.inference.EmptySecretSettings;
import org.elasticsearch.inference.EmptyTaskSettings;
import org.elasticsearch.inference.ModelConfigurations;
import org.elasticsearch.inference.ModelSecrets;
import org.elasticsearch.inference.SecretSettings;
import org.elasticsearch.inference.TaskSettings;
import org.elasticsearch.inference.TaskType;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
import org.elasticsearch.xpack.inference.services.ConfigurationParseContext;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceComponents;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceExecutableActionModel;
import org.elasticsearch.xpack.inference.services.elastic.action.ElasticInferenceServiceActionVisitor;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.Map;
public class ElasticInferenceServiceDenseTextEmbeddingsModel extends ElasticInferenceServiceExecutableActionModel {
private final URI uri;
public ElasticInferenceServiceDenseTextEmbeddingsModel(
String inferenceEntityId,
TaskType taskType,
String service,
Map<String, Object> serviceSettings,
Map<String, Object> taskSettings,
Map<String, Object> secrets,
ElasticInferenceServiceComponents elasticInferenceServiceComponents,
ConfigurationParseContext context,
ChunkingSettings chunkingSettings
) {
this(
inferenceEntityId,
taskType,
service,
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings.fromMap(serviceSettings, context),
EmptyTaskSettings.INSTANCE,
EmptySecretSettings.INSTANCE,
elasticInferenceServiceComponents,
chunkingSettings
);
}
public ElasticInferenceServiceDenseTextEmbeddingsModel(
String inferenceEntityId,
TaskType taskType,
String service,
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings serviceSettings,
@Nullable TaskSettings taskSettings,
@Nullable SecretSettings secretSettings,
ElasticInferenceServiceComponents elasticInferenceServiceComponents,
ChunkingSettings chunkingSettings
) {
super(
new ModelConfigurations(inferenceEntityId, taskType, service, serviceSettings, taskSettings, chunkingSettings),
new ModelSecrets(secretSettings),
serviceSettings,
elasticInferenceServiceComponents
);
this.uri = createUri();
}
public ElasticInferenceServiceDenseTextEmbeddingsModel(
ElasticInferenceServiceDenseTextEmbeddingsModel model,
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings serviceSettings
) {
super(model, serviceSettings);
this.uri = createUri();
}
@Override
public ExecutableAction accept(ElasticInferenceServiceActionVisitor visitor, Map<String, Object> taskSettings) {
return visitor.create(this);
}
@Override
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings getServiceSettings() {
return (ElasticInferenceServiceDenseTextEmbeddingsServiceSettings) super.getServiceSettings();
}
public URI uri() {
return uri;
}
private URI createUri() throws ElasticsearchStatusException {
try {
// TODO, consider transforming the base URL into a URI for better error handling.
return new URI(elasticInferenceServiceComponents().elasticInferenceServiceUrl() + "/api/v1/embed/text/dense");
} catch (URISyntaxException e) {
throw new ElasticsearchStatusException(
"Failed to create URI for service ["
+ this.getConfigurations().getService()
+ "] with taskType ["
+ this.getTaskType()
+ "]: "
+ e.getMessage(),
RestStatus.BAD_REQUEST,
e
);
}
}
}

View file

@ -0,0 +1,236 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
import org.elasticsearch.TransportVersion;
import org.elasticsearch.TransportVersions;
import org.elasticsearch.common.ValidationException;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
import org.elasticsearch.inference.ModelConfigurations;
import org.elasticsearch.inference.ServiceSettings;
import org.elasticsearch.inference.SimilarityMeasure;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xpack.inference.services.ConfigurationParseContext;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceService;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceRateLimitServiceSettings;
import org.elasticsearch.xpack.inference.services.settings.FilteredXContentObject;
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
import java.io.IOException;
import java.util.Map;
import java.util.Objects;
import static org.elasticsearch.xpack.inference.services.ServiceFields.DIMENSIONS;
import static org.elasticsearch.xpack.inference.services.ServiceFields.MAX_INPUT_TOKENS;
import static org.elasticsearch.xpack.inference.services.ServiceFields.MODEL_ID;
import static org.elasticsearch.xpack.inference.services.ServiceFields.SIMILARITY;
import static org.elasticsearch.xpack.inference.services.ServiceUtils.extractRequiredString;
import static org.elasticsearch.xpack.inference.services.ServiceUtils.extractSimilarity;
import static org.elasticsearch.xpack.inference.services.ServiceUtils.removeAsType;
public class ElasticInferenceServiceDenseTextEmbeddingsServiceSettings extends FilteredXContentObject
implements
ServiceSettings,
ElasticInferenceServiceRateLimitServiceSettings {
public static final String NAME = "elastic_inference_service_dense_embeddings_service_settings";
public static final RateLimitSettings DEFAULT_RATE_LIMIT_SETTINGS = new RateLimitSettings(10_000);
private final String modelId;
private final SimilarityMeasure similarity;
private final Integer dimensions;
private final Integer maxInputTokens;
private final RateLimitSettings rateLimitSettings;
public static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromMap(
Map<String, Object> map,
ConfigurationParseContext context
) {
return switch (context) {
case REQUEST -> fromRequestMap(map, context);
case PERSISTENT -> fromPersistentMap(map, context);
};
}
private static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromRequestMap(
Map<String, Object> map,
ConfigurationParseContext context
) {
ValidationException validationException = new ValidationException();
String modelId = extractRequiredString(map, MODEL_ID, ModelConfigurations.SERVICE_SETTINGS, validationException);
RateLimitSettings rateLimitSettings = RateLimitSettings.of(
map,
DEFAULT_RATE_LIMIT_SETTINGS,
validationException,
ElasticInferenceService.NAME,
context
);
SimilarityMeasure similarity = extractSimilarity(map, ModelConfigurations.SERVICE_SETTINGS, validationException);
Integer dims = removeAsType(map, DIMENSIONS, Integer.class);
Integer maxInputTokens = removeAsType(map, MAX_INPUT_TOKENS, Integer.class);
if (validationException.validationErrors().isEmpty() == false) {
throw validationException;
}
return new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(modelId, similarity, dims, maxInputTokens, rateLimitSettings);
}
private static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromPersistentMap(
Map<String, Object> map,
ConfigurationParseContext context
) {
ValidationException validationException = new ValidationException();
String modelId = extractRequiredString(map, MODEL_ID, ModelConfigurations.SERVICE_SETTINGS, validationException);
RateLimitSettings rateLimitSettings = RateLimitSettings.of(
map,
DEFAULT_RATE_LIMIT_SETTINGS,
validationException,
ElasticInferenceService.NAME,
context
);
SimilarityMeasure similarity = extractSimilarity(map, ModelConfigurations.SERVICE_SETTINGS, validationException);
Integer dims = removeAsType(map, DIMENSIONS, Integer.class);
Integer maxInputTokens = removeAsType(map, MAX_INPUT_TOKENS, Integer.class);
if (validationException.validationErrors().isEmpty() == false) {
throw validationException;
}
return new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(modelId, similarity, dims, maxInputTokens, rateLimitSettings);
}
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
String modelId,
@Nullable SimilarityMeasure similarity,
@Nullable Integer dimensions,
@Nullable Integer maxInputTokens,
RateLimitSettings rateLimitSettings
) {
this.modelId = modelId;
this.similarity = similarity;
this.dimensions = dimensions;
this.maxInputTokens = maxInputTokens;
this.rateLimitSettings = Objects.requireNonNullElse(rateLimitSettings, DEFAULT_RATE_LIMIT_SETTINGS);
}
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(StreamInput in) throws IOException {
this.modelId = in.readString();
this.similarity = in.readOptionalEnum(SimilarityMeasure.class);
this.dimensions = in.readOptionalVInt();
this.maxInputTokens = in.readOptionalVInt();
this.rateLimitSettings = new RateLimitSettings(in);
}
@Override
public SimilarityMeasure similarity() {
return similarity;
}
@Override
public Integer dimensions() {
return dimensions;
}
public Integer maxInputTokens() {
return maxInputTokens;
}
@Override
public String modelId() {
return modelId;
}
@Override
public RateLimitSettings rateLimitSettings() {
return rateLimitSettings;
}
@Override
public DenseVectorFieldMapper.ElementType elementType() {
return DenseVectorFieldMapper.ElementType.FLOAT;
}
public RateLimitSettings getRateLimitSettings() {
return rateLimitSettings;
}
@Override
public String getWriteableName() {
return NAME;
}
@Override
public XContentBuilder toXContentFragmentOfExposedFields(XContentBuilder builder, Params params) throws IOException {
builder.field(MODEL_ID, modelId);
rateLimitSettings.toXContent(builder, params);
return builder;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
if (similarity != null) {
builder.field(SIMILARITY, similarity);
}
if (dimensions != null) {
builder.field(DIMENSIONS, dimensions);
}
if (maxInputTokens != null) {
builder.field(MAX_INPUT_TOKENS, maxInputTokens);
}
toXContentFragmentOfExposedFields(builder, params);
builder.endObject();
return builder;
}
@Override
public TransportVersion getMinimalSupportedVersion() {
return TransportVersions.ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED;
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeString(modelId);
out.writeOptionalEnum(SimilarityMeasure.translateSimilarity(similarity, out.getTransportVersion()));
out.writeOptionalVInt(dimensions);
out.writeOptionalVInt(maxInputTokens);
rateLimitSettings.writeTo(out);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings that = (ElasticInferenceServiceDenseTextEmbeddingsServiceSettings) o;
return Objects.equals(modelId, that.modelId)
&& similarity == that.similarity
&& Objects.equals(dimensions, that.dimensions)
&& Objects.equals(maxInputTokens, that.maxInputTokens)
&& Objects.equals(rateLimitSettings, that.rateLimitSettings);
}
@Override
public int hashCode() {
return Objects.hash(modelId, similarity, dimensions, maxInputTokens, rateLimitSettings);
}
}

View file

@ -0,0 +1,93 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.entity.ByteArrayEntity;
import org.apache.http.message.BasicHeader;
import org.elasticsearch.common.Strings;
import org.elasticsearch.inference.InputType;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.external.request.Request;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
import org.elasticsearch.xpack.inference.telemetry.TraceContextHandler;
import java.net.URI;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Objects;
import static org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceSparseEmbeddingsRequest.inputTypeToUsageContext;
public class ElasticInferenceServiceDenseTextEmbeddingsRequest extends ElasticInferenceServiceRequest {
private final URI uri;
private final ElasticInferenceServiceDenseTextEmbeddingsModel model;
private final List<String> inputs;
private final TraceContextHandler traceContextHandler;
private final InputType inputType;
public ElasticInferenceServiceDenseTextEmbeddingsRequest(
ElasticInferenceServiceDenseTextEmbeddingsModel model,
List<String> inputs,
TraceContext traceContext,
ElasticInferenceServiceRequestMetadata metadata,
InputType inputType
) {
super(metadata);
this.inputs = inputs;
this.model = Objects.requireNonNull(model);
this.uri = model.uri();
this.traceContextHandler = new TraceContextHandler(traceContext);
this.inputType = inputType;
}
@Override
public HttpRequestBase createHttpRequestBase() {
var httpPost = new HttpPost(uri);
var usageContext = inputTypeToUsageContext(inputType);
var requestEntity = Strings.toString(
new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(inputs, model.getServiceSettings().modelId(), usageContext)
);
ByteArrayEntity byteEntity = new ByteArrayEntity(requestEntity.getBytes(StandardCharsets.UTF_8));
httpPost.setEntity(byteEntity);
traceContextHandler.propagateTraceContext(httpPost);
httpPost.setHeader(new BasicHeader(HttpHeaders.CONTENT_TYPE, XContentType.JSON.mediaType()));
return httpPost;
}
public TraceContext getTraceContext() {
return traceContextHandler.traceContext();
}
@Override
public String getInferenceEntityId() {
return model.getInferenceEntityId();
}
@Override
public URI getURI() {
return this.uri;
}
@Override
public Request truncate() {
return this;
}
@Override
public boolean[] getTruncationInfo() {
return null;
}
}

View file

@ -0,0 +1,57 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.xcontent.ToXContentObject;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceUsageContext;
import java.io.IOException;
import java.util.List;
import java.util.Objects;
public record ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List<String> inputs,
String modelId,
@Nullable ElasticInferenceServiceUsageContext usageContext
) implements ToXContentObject {
private static final String INPUT_FIELD = "input";
private static final String MODEL_FIELD = "model";
private static final String USAGE_CONTEXT = "usage_context";
public ElasticInferenceServiceDenseTextEmbeddingsRequestEntity {
Objects.requireNonNull(inputs);
Objects.requireNonNull(modelId);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.startArray(INPUT_FIELD);
for (String input : inputs) {
builder.value(input);
}
builder.endArray();
builder.field(MODEL_FIELD, modelId);
// optional field
if (Objects.nonNull(usageContext) && usageContext != ElasticInferenceServiceUsageContext.UNSPECIFIED) {
builder.field(USAGE_CONTEXT, usageContext);
}
builder.endObject();
return builder;
}
}

View file

@ -5,7 +5,7 @@
* 2.0.
*/
package org.elasticsearch.xpack.inference.external.request.elastic.rerank;
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.HttpPost;
@ -15,8 +15,6 @@ import org.apache.http.message.BasicHeader;
import org.elasticsearch.common.Strings;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.external.request.Request;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRequest;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRequestMetadata;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModel;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
import org.elasticsearch.xpack.inference.telemetry.TraceContextHandler;

View file

@ -5,7 +5,7 @@
* 2.0.
*/
package org.elasticsearch.xpack.inference.external.request.elastic.rerank;
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.xcontent.ToXContentObject;

View file

@ -44,6 +44,8 @@ public class ElasticInferenceServiceAuthorizationResponseEntity implements Infer
TaskType.SPARSE_EMBEDDING,
"chat",
TaskType.CHAT_COMPLETION,
"embed/text/dense",
TaskType.TEXT_EMBEDDING,
"rerank/text/text-similarity",
TaskType.RERANK
);

View file

@ -51,11 +51,11 @@ public class ElasticInferenceServiceSparseEmbeddingsResponseEntity {
* <code>
* {
* "data": [
* {
* "Embed": 2.1259406,
* "this": 1.7073475,
* "text": 0.9020516
* },
* [
* 2.1259406,
* 1.7073475,
* 0.9020516
* ],
* (...)
* ],
* "meta": {

View file

@ -12,7 +12,7 @@ import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentFactory;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.external.request.elastic.rerank.ElasticInferenceServiceRerankRequestEntity;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRerankRequestEntity;
import java.io.IOException;
import java.util.List;

View file

@ -10,7 +10,7 @@ package org.elasticsearch.xpack.inference.external.request.elastic;
import org.apache.http.client.methods.HttpPost;
import org.elasticsearch.tasks.Task;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.inference.external.request.elastic.rerank.ElasticInferenceServiceRerankRequest;
import org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRerankRequest;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModelTests;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;

View file

@ -17,6 +17,7 @@ import org.elasticsearch.common.bytes.BytesReference;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentHelper;
import org.elasticsearch.core.TimeValue;
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
import org.elasticsearch.inference.ChunkInferenceInput;
import org.elasticsearch.inference.ChunkedInference;
import org.elasticsearch.inference.EmptySecretSettings;
@ -29,7 +30,6 @@ import org.elasticsearch.inference.MinimalServiceSettings;
import org.elasticsearch.inference.Model;
import org.elasticsearch.inference.TaskType;
import org.elasticsearch.inference.UnifiedCompletionRequest;
import org.elasticsearch.inference.WeightedToken;
import org.elasticsearch.plugins.Plugin;
import org.elasticsearch.test.ESSingleNodeTestCase;
import org.elasticsearch.test.http.MockResponse;
@ -40,9 +40,8 @@ import org.elasticsearch.xcontent.XContentFactory;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.core.inference.action.InferenceAction;
import org.elasticsearch.xpack.core.inference.results.ChunkedInferenceEmbedding;
import org.elasticsearch.xpack.core.inference.results.EmbeddingResults;
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResults;
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResultsTests;
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
import org.elasticsearch.xpack.core.inference.results.UnifiedChatCompletionException;
import org.elasticsearch.xpack.inference.InferencePlugin;
import org.elasticsearch.xpack.inference.LocalStateInferencePlugin;
@ -59,6 +58,7 @@ import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticI
import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticInferenceServiceAuthorizationRequestHandler;
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionModel;
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionServiceSettings;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModelTests;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModel;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModelTests;
import org.elasticsearch.xpack.inference.services.elastic.response.ElasticInferenceServiceAuthorizationResponseEntity;
@ -421,47 +421,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
}
}
public void testInfer_ThrowsErrorWhenTaskTypeIsNotValid() throws IOException {
var sender = mock(Sender.class);
var factory = mock(HttpRequestSender.Factory.class);
when(factory.createSender()).thenReturn(sender);
var mockModel = getInvalidModel("model_id", "service_name", TaskType.TEXT_EMBEDDING);
try (var service = createService(factory)) {
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
service.infer(
mockModel,
null,
null,
null,
List.of(""),
false,
new HashMap<>(),
InputType.INGEST,
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
var thrownException = expectThrows(ElasticsearchStatusException.class, () -> listener.actionGet(TIMEOUT));
MatcherAssert.assertThat(
thrownException.getMessage(),
is(
"Inference entity [model_id] does not support task type [text_embedding] "
+ "for inference, the task type must be one of [sparse_embedding, rerank]."
)
);
verify(factory, times(1)).createSender();
verify(sender, times(1)).start();
}
verify(sender, times(1)).close();
verifyNoMoreInteractions(factory);
verifyNoMoreInteractions(sender);
}
public void testInfer_ThrowsErrorWhenTaskTypeIsNotValid_ChatCompletion() throws IOException {
var sender = mock(Sender.class);
@ -490,7 +449,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
thrownException.getMessage(),
is(
"Inference entity [model_id] does not support task type [chat_completion] "
+ "for inference, the task type must be one of [sparse_embedding, rerank]. "
+ "for inference, the task type must be one of [text_embedding, sparse_embedding, rerank]. "
+ "The task type for the inference entity is chat_completion, "
+ "please use the _inference/chat_completion/model_id/_stream URL."
)
@ -701,82 +660,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
}
}
public void testChunkedInfer_PropagatesProductUseCaseHeader() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
var elasticInferenceServiceURL = getUrl(webServer);
try (var service = createService(senderFactory, elasticInferenceServiceURL)) {
String responseJson = """
{
"data": [
{
"hello": 2.1259406,
"greet": 1.7073475
}
]
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
// Set up the product use case in the thread context
String productUseCase = "test-product-use-case";
threadPool.getThreadContext().putHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER, productUseCase);
var model = ElasticInferenceServiceSparseEmbeddingsModelTests.createModel(elasticInferenceServiceURL, "my-model-id");
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
try {
service.chunkedInfer(
model,
null,
List.of(new ChunkInferenceInput("input text")),
new HashMap<>(),
InputType.INGEST,
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
var results = listener.actionGet(TIMEOUT);
// Verify the response was processed correctly
ChunkedInference inferenceResult = results.getFirst();
assertThat(inferenceResult, instanceOf(ChunkedInferenceEmbedding.class));
var sparseResult = (ChunkedInferenceEmbedding) inferenceResult;
assertThat(
sparseResult.chunks(),
is(
List.of(
new EmbeddingResults.Chunk(
new SparseEmbeddingResults.Embedding(
List.of(new WeightedToken("hello", 2.1259406f), new WeightedToken("greet", 1.7073475f)),
false
),
new ChunkedInference.TextOffset(0, "input text".length())
)
)
)
);
// Verify the request was sent and contains expected headers
MatcherAssert.assertThat(webServer.requests(), hasSize(1));
var request = webServer.requests().getFirst();
assertNull(request.getUri().getQuery());
MatcherAssert.assertThat(request.getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
// Check that the product use case header was set correctly
assertThat(request.getHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER), is(productUseCase));
// Verify request body
var requestMap = entityAsMap(request.getBody());
assertThat(requestMap, is(Map.of("input", List.of("input text"), "model", "my-model-id", "usage_context", "ingest")));
} finally {
// Clean up the thread context
threadPool.getThreadContext().stashContext();
}
}
}
public void testUnifiedCompletionInfer_PropagatesProductUseCaseHeader() throws IOException {
var elasticInferenceServiceURL = getUrl(webServer);
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
@ -835,30 +718,45 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
}
}
public void testChunkedInfer() throws IOException {
public void testChunkedInfer_PropagatesProductUseCaseHeader() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
var elasticInferenceServiceURL = getUrl(webServer);
try (var service = createService(senderFactory, elasticInferenceServiceURL)) {
try (var service = createService(senderFactory, getUrl(webServer))) {
// Batching will call the service with 2 inputs
String responseJson = """
{
"data": [
{
"hello": 2.1259406,
"greet": 1.7073475
[
0.123,
-0.456,
0.789
],
[
0.987,
-0.654,
0.321
]
],
"meta": {
"usage": {
"total_tokens": 10
}
]
}
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
String productUseCase = "test-product-use-case";
threadPool.getThreadContext().putHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER, productUseCase);
var model = ElasticInferenceServiceSparseEmbeddingsModelTests.createModel(elasticInferenceServiceURL, "my-model-id");
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
// 2 inputs
service.chunkedInfer(
model,
null,
List.of(new ChunkInferenceInput("input text")),
List.of(new ChunkInferenceInput("hello world"), new ChunkInferenceInput("dense embedding")),
new HashMap<>(),
InputType.INGEST,
InferenceAction.Request.DEFAULT_TIMEOUT,
@ -866,32 +764,106 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
);
var results = listener.actionGet(TIMEOUT);
assertThat(results.get(0), instanceOf(ChunkedInferenceEmbedding.class));
var sparseResult = (ChunkedInferenceEmbedding) results.get(0);
assertThat(
sparseResult.chunks(),
is(
List.of(
new EmbeddingResults.Chunk(
new SparseEmbeddingResults.Embedding(
List.of(new WeightedToken("hello", 2.1259406f), new WeightedToken("greet", 1.7073475f)),
false
),
new ChunkedInference.TextOffset(0, "input text".length())
)
)
)
assertThat(results, hasSize(2));
// Verify the response was processed correctly
ChunkedInference inferenceResult = results.getFirst();
assertThat(inferenceResult, instanceOf(ChunkedInferenceEmbedding.class));
// Verify the request was sent and contains expected headers
assertThat(webServer.requests(), hasSize(1));
var request = webServer.requests().getFirst();
assertNull(request.getUri().getQuery());
assertThat(request.getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
// Check that the product use case header was set correctly
assertThat(request.getHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER), is(productUseCase));
} finally {
// Clean up the thread context
threadPool.getThreadContext().stashContext();
}
}
public void testChunkedInfer_BatchesCallsChunkingSettingsSet() throws IOException {
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
try (var service = createService(senderFactory, getUrl(webServer))) {
// Batching will call the service with 2 inputs
String responseJson = """
{
"data": [
[
0.123,
-0.456,
0.789
],
[
0.987,
-0.654,
0.321
]
],
"meta": {
"usage": {
"total_tokens": 10
}
}
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
// 2 inputs
service.chunkedInfer(
model,
null,
List.of(new ChunkInferenceInput("hello world"), new ChunkInferenceInput("dense embedding")),
new HashMap<>(),
InputType.INGEST,
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
MatcherAssert.assertThat(webServer.requests(), hasSize(1));
assertNull(webServer.requests().get(0).getUri().getQuery());
var results = listener.actionGet(TIMEOUT);
assertThat(results, hasSize(2));
// First result
{
assertThat(results.getFirst(), instanceOf(ChunkedInferenceEmbedding.class));
var denseResult = (ChunkedInferenceEmbedding) results.getFirst();
assertThat(denseResult.chunks(), hasSize(1));
assertEquals(new ChunkedInference.TextOffset(0, "hello world".length()), denseResult.chunks().getFirst().offset());
assertThat(denseResult.chunks().get(0).embedding(), instanceOf(TextEmbeddingFloatResults.Embedding.class));
var embedding = (TextEmbeddingFloatResults.Embedding) denseResult.chunks().get(0).embedding();
assertArrayEquals(new float[] { 0.123f, -0.456f, 0.789f }, embedding.values(), 0.0f);
}
// Second result
{
assertThat(results.get(1), instanceOf(ChunkedInferenceEmbedding.class));
var denseResult = (ChunkedInferenceEmbedding) results.get(1);
assertThat(denseResult.chunks(), hasSize(1));
assertEquals(new ChunkedInference.TextOffset(0, "dense embedding".length()), denseResult.chunks().getFirst().offset());
assertThat(denseResult.chunks().getFirst().embedding(), instanceOf(TextEmbeddingFloatResults.Embedding.class));
var embedding = (TextEmbeddingFloatResults.Embedding) denseResult.chunks().get(0).embedding();
assertArrayEquals(new float[] { 0.987f, -0.654f, 0.321f }, embedding.values(), 0.0f);
}
assertThat(webServer.requests(), hasSize(1));
assertNull(webServer.requests().getFirst().getUri().getQuery());
assertThat(webServer.requests().getFirst().getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(webServer.requests().getFirst().getBody());
MatcherAssert.assertThat(
webServer.requests().get(0).getHeader(HttpHeaders.CONTENT_TYPE),
equalTo(XContentType.JSON.mediaType())
requestMap,
is(Map.of("input", List.of("hello world", "dense embedding"), "model", "my-dense-model-id", "usage_context", "ingest"))
);
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
assertThat(requestMap, is(Map.of("input", List.of("input text"), "model", "my-model-id", "usage_context", "ingest")));
}
}
@ -903,27 +875,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
}
}
public void testHideFromConfigurationApi_ReturnsTrue_WithModelTaskTypesThatAreNotImplemented() throws Exception {
try (
var service = createServiceWithMockSender(
ElasticInferenceServiceAuthorizationModel.of(
new ElasticInferenceServiceAuthorizationResponseEntity(
List.of(
new ElasticInferenceServiceAuthorizationResponseEntity.AuthorizedModel(
"model-1",
EnumSet.of(TaskType.TEXT_EMBEDDING)
)
)
)
)
)
) {
ensureAuthorizationCallFinished(service);
assertTrue(service.hideFromConfigurationApi());
}
}
public void testHideFromConfigurationApi_ReturnsFalse_WithAvailableModels() throws Exception {
try (
var service = createServiceWithMockSender(
@ -953,7 +904,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
List.of(
new ElasticInferenceServiceAuthorizationResponseEntity.AuthorizedModel(
"model-1",
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION)
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.TEXT_EMBEDDING)
)
)
)
@ -966,7 +917,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
{
"service": "elastic",
"name": "Elastic",
"task_types": ["sparse_embedding", "chat_completion"],
"task_types": ["sparse_embedding", "chat_completion", "text_embedding"],
"configurations": {
"rate_limit.requests_per_minute": {
"description": "Minimize the number of rate limit errors.",
@ -975,7 +926,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding", "sparse_embedding" , "rerank", "chat_completion"]
},
"model_id": {
"description": "The name of the model to use for the inference task.",
@ -984,7 +935,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "str",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding", "sparse_embedding" , "rerank", "chat_completion"]
},
"max_input_tokens": {
"description": "Allows you to specify the maximum number of tokens per input.",
@ -993,7 +944,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding"]
"supported_task_types": ["text_embedding", "sparse_embedding"]
}
}
}
@ -1030,7 +981,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding", "sparse_embedding" , "rerank", "chat_completion"]
},
"model_id": {
"description": "The name of the model to use for the inference task.",
@ -1039,7 +990,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "str",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding", "sparse_embedding" , "rerank", "chat_completion"]
},
"max_input_tokens": {
"description": "Allows you to specify the maximum number of tokens per input.",
@ -1048,7 +999,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding"]
"supported_task_types": ["text_embedding", "sparse_embedding"]
}
}
}
@ -1090,7 +1041,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
{
"service": "elastic",
"name": "Elastic",
"task_types": [],
"task_types": ["text_embedding"],
"configurations": {
"rate_limit.requests_per_minute": {
"description": "Minimize the number of rate limit errors.",
@ -1099,7 +1050,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding" , "sparse_embedding", "rerank", "chat_completion"]
},
"model_id": {
"description": "The name of the model to use for the inference task.",
@ -1108,7 +1059,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "str",
"supported_task_types": ["sparse_embedding" , "rerank", "chat_completion"]
"supported_task_types": ["text_embedding" , "sparse_embedding", "rerank", "chat_completion"]
},
"max_input_tokens": {
"description": "Allows you to specify the maximum number of tokens per input.",
@ -1117,7 +1068,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"sensitive": false,
"updatable": false,
"type": "int",
"supported_task_types": ["sparse_embedding"]
"supported_task_types": ["text_embedding", "sparse_embedding"]
}
}
}
@ -1296,6 +1247,10 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
"task_types": ["embed/text/sparse"]
},
{
"model_name": "multilingual-embed-v1",
"task_types": ["embed/text/dense"]
},
{
"model_name": "rerank-v1",
"task_types": ["rerank/text/text-similarity"]
}
@ -1319,6 +1274,16 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
service
),
new InferenceService.DefaultConfigId(
".multilingual-embed-v1-elastic",
MinimalServiceSettings.textEmbedding(
ElasticInferenceService.NAME,
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
DenseVectorFieldMapper.ElementType.FLOAT
),
service
),
new InferenceService.DefaultConfigId(
".rainbow-sprinkles-elastic",
MinimalServiceSettings.chatCompletion(ElasticInferenceService.NAME),
@ -1332,16 +1297,19 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
)
)
);
assertThat(service.supportedTaskTypes(), is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.RERANK)));
assertThat(
service.supportedTaskTypes(),
is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.RERANK, TaskType.TEXT_EMBEDDING))
);
PlainActionFuture<List<Model>> listener = new PlainActionFuture<>();
service.defaultConfigs(listener);
var models = listener.actionGet(TIMEOUT);
assertThat(models.size(), is(3));
assertThat(models.size(), is(4));
assertThat(models.get(0).getConfigurations().getInferenceEntityId(), is(".elser-v2-elastic"));
assertThat(models.get(1).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
assertThat(models.get(2).getConfigurations().getInferenceEntityId(), is(".rerank-v1-elastic"));
assertThat(models.get(1).getConfigurations().getInferenceEntityId(), is(".multilingual-embed-v1-elastic"));
assertThat(models.get(2).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
assertThat(models.get(3).getConfigurations().getInferenceEntityId(), is(".rerank-v1-elastic"));
}
}

View file

@ -22,12 +22,14 @@ import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.core.inference.action.InferenceAction;
import org.elasticsearch.xpack.core.inference.results.RankedDocsResultsTests;
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResultsTests;
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
import org.elasticsearch.xpack.inference.external.http.HttpClientManager;
import org.elasticsearch.xpack.inference.external.http.sender.EmbeddingsInput;
import org.elasticsearch.xpack.inference.external.http.sender.HttpRequestSenderTests;
import org.elasticsearch.xpack.inference.external.http.sender.QueryAndDocsInputs;
import org.elasticsearch.xpack.inference.logging.ThrottlerManager;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceSparseEmbeddingsModelTests;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModelTests;
import org.elasticsearch.xpack.inference.services.elastic.rerank.ElasticInferenceServiceRerankModelTests;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
import org.junit.After;
@ -46,6 +48,7 @@ import static org.elasticsearch.xpack.inference.external.http.retry.RetrySetting
import static org.elasticsearch.xpack.inference.external.http.sender.HttpRequestSenderTests.createSender;
import static org.elasticsearch.xpack.inference.services.ServiceComponentsTests.createWithEmptySettings;
import static org.hamcrest.Matchers.contains;
import static org.hamcrest.Matchers.containsString;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.hasSize;
import static org.hamcrest.Matchers.instanceOf;
@ -256,6 +259,206 @@ public class ElasticInferenceServiceActionCreatorTests extends ESTestCase {
}
}
@SuppressWarnings("unchecked")
public void testExecute_ReturnsSuccessfulResponse_ForDenseTextEmbeddingsAction() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
try (var sender = createSender(senderFactory)) {
sender.start();
String responseJson = """
{
"data": [
[
2.1259406,
1.7073475,
0.9020516
],
[
1.8342123,
2.3456789,
0.7654321
]
]
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
var actionCreator = new ElasticInferenceServiceActionCreator(sender, createWithEmptySettings(threadPool), createTraceContext());
var action = actionCreator.create(model);
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
action.execute(
new EmbeddingsInput(List.of("hello world", "second text"), null, InputType.UNSPECIFIED),
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
var result = listener.actionGet(TIMEOUT);
assertThat(result, instanceOf(TextEmbeddingFloatResults.class));
var textEmbeddingResults = (TextEmbeddingFloatResults) result;
assertThat(textEmbeddingResults.embeddings(), hasSize(2));
var firstEmbedding = textEmbeddingResults.embeddings().get(0);
assertThat(firstEmbedding.values(), is(new float[] { 2.1259406f, 1.7073475f, 0.9020516f }));
var secondEmbedding = textEmbeddingResults.embeddings().get(1);
assertThat(secondEmbedding.values(), is(new float[] { 1.8342123f, 2.3456789f, 0.7654321f }));
assertThat(webServer.requests(), hasSize(1));
assertNull(webServer.requests().get(0).getUri().getQuery());
assertThat(webServer.requests().get(0).getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
assertThat(requestMap.size(), is(2));
assertThat(requestMap.get("input"), instanceOf(List.class));
var inputList = (List<String>) requestMap.get("input");
assertThat(inputList, contains("hello world", "second text"));
assertThat(requestMap.get("model"), is("my-dense-model-id"));
}
}
@SuppressWarnings("unchecked")
public void testExecute_ReturnsSuccessfulResponse_ForDenseTextEmbeddingsAction_WithUsageContext() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
try (var sender = createSender(senderFactory)) {
sender.start();
String responseJson = """
{
"data": [
[
0.1234567,
0.9876543
]
]
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
var actionCreator = new ElasticInferenceServiceActionCreator(sender, createWithEmptySettings(threadPool), createTraceContext());
var action = actionCreator.create(model);
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
action.execute(
new EmbeddingsInput(List.of("search query"), null, InputType.SEARCH),
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
var result = listener.actionGet(TIMEOUT);
assertThat(result, instanceOf(TextEmbeddingFloatResults.class));
var textEmbeddingResults = (TextEmbeddingFloatResults) result;
assertThat(textEmbeddingResults.embeddings(), hasSize(1));
var embedding = textEmbeddingResults.embeddings().get(0);
assertThat(embedding.values(), is(new float[] { 0.1234567f, 0.9876543f }));
assertThat(webServer.requests(), hasSize(1));
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
assertThat(requestMap.size(), is(3));
assertThat(requestMap.get("input"), instanceOf(List.class));
var inputList = (List<String>) requestMap.get("input");
assertThat(inputList, contains("search query"));
assertThat(requestMap.get("model"), is("my-dense-model-id"));
assertThat(requestMap.get("usage_context"), is("search"));
}
}
@SuppressWarnings("unchecked")
public void testSend_FailsFromInvalidResponseFormat_ForDenseTextEmbeddingsAction() throws IOException {
// timeout as zero for no retries
var settings = buildSettingsWithRetryFields(
TimeValue.timeValueMillis(1),
TimeValue.timeValueMinutes(1),
TimeValue.timeValueSeconds(0)
);
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager, settings);
try (var sender = createSender(senderFactory)) {
sender.start();
// This will fail because the expected output is {"data": [[...]]}
String responseJson = """
{
"data": {
"embedding": [2.1259406, 1.7073475]
}
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
var actionCreator = new ElasticInferenceServiceActionCreator(sender, createWithEmptySettings(threadPool), createTraceContext());
var action = actionCreator.create(model);
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
action.execute(
new EmbeddingsInput(List.of("hello world"), null, InputType.UNSPECIFIED),
InferenceAction.Request.DEFAULT_TIMEOUT,
listener
);
var thrownException = expectThrows(ElasticsearchException.class, () -> listener.actionGet(TIMEOUT));
assertThat(thrownException.getMessage(), containsString("[EmbeddingFloatResult] failed to parse field [data]"));
assertThat(webServer.requests(), hasSize(1));
assertNull(webServer.requests().get(0).getUri().getQuery());
assertThat(webServer.requests().get(0).getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
assertThat(requestMap.size(), is(2));
assertThat(requestMap.get("input"), instanceOf(List.class));
var inputList = (List<String>) requestMap.get("input");
assertThat(inputList, contains("hello world"));
assertThat(requestMap.get("model"), is("my-dense-model-id"));
}
}
@SuppressWarnings("unchecked")
public void testExecute_ReturnsSuccessfulResponse_ForDenseTextEmbeddingsAction_EmptyEmbeddings() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
try (var sender = createSender(senderFactory)) {
sender.start();
String responseJson = """
{
"data": []
}
""";
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id");
var actionCreator = new ElasticInferenceServiceActionCreator(sender, createWithEmptySettings(threadPool), createTraceContext());
var action = actionCreator.create(model);
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
action.execute(new EmbeddingsInput(List.of(), null, InputType.UNSPECIFIED), InferenceAction.Request.DEFAULT_TIMEOUT, listener);
var result = listener.actionGet(TIMEOUT);
assertThat(result, instanceOf(TextEmbeddingFloatResults.class));
var textEmbeddingResults = (TextEmbeddingFloatResults) result;
assertThat(textEmbeddingResults.embeddings(), hasSize(0));
assertThat(webServer.requests(), hasSize(1));
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
assertThat(requestMap.get("input"), instanceOf(List.class));
var inputList = (List<String>) requestMap.get("input");
assertThat(inputList, hasSize(0));
}
}
public void testExecute_ReturnsSuccessfulResponse_AfterTruncating() throws IOException {
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);

View file

@ -0,0 +1,39 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
import org.elasticsearch.inference.EmptySecretSettings;
import org.elasticsearch.inference.EmptyTaskSettings;
import org.elasticsearch.inference.SimilarityMeasure;
import org.elasticsearch.inference.TaskType;
import org.elasticsearch.xpack.inference.chunking.ChunkingSettingsBuilder;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceComponents;
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
public class ElasticInferenceServiceDenseTextEmbeddingsModelTests {
public static ElasticInferenceServiceDenseTextEmbeddingsModel createModel(String url, String modelId) {
return new ElasticInferenceServiceDenseTextEmbeddingsModel(
"id",
TaskType.TEXT_EMBEDDING,
"elastic",
new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
SimilarityMeasure.COSINE,
null,
null,
new RateLimitSettings(1000L)
),
EmptyTaskSettings.INSTANCE,
EmptySecretSettings.INSTANCE,
ElasticInferenceServiceComponents.of(url),
ChunkingSettingsBuilder.DEFAULT_SETTINGS
);
}
}

View file

@ -0,0 +1,165 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.inference.SimilarityMeasure;
import org.elasticsearch.test.AbstractWireSerializingTestCase;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentFactory;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.services.ConfigurationParseContext;
import org.elasticsearch.xpack.inference.services.ServiceFields;
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import static org.hamcrest.Matchers.is;
public class ElasticInferenceServiceDenseTextEmbeddingsServiceSettingsTests extends AbstractWireSerializingTestCase<
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings> {
@Override
protected Writeable.Reader<ElasticInferenceServiceDenseTextEmbeddingsServiceSettings> instanceReader() {
return ElasticInferenceServiceDenseTextEmbeddingsServiceSettings::new;
}
@Override
protected ElasticInferenceServiceDenseTextEmbeddingsServiceSettings createTestInstance() {
return createRandom();
}
@Override
protected ElasticInferenceServiceDenseTextEmbeddingsServiceSettings mutateInstance(
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings instance
) throws IOException {
return randomValueOtherThan(instance, ElasticInferenceServiceDenseTextEmbeddingsServiceSettingsTests::createRandom);
}
public void testFromMap_Request_WithAllSettings() {
var modelId = "my-dense-model-id";
var similarity = SimilarityMeasure.COSINE;
var dimensions = 384;
var maxInputTokens = 512;
var serviceSettings = ElasticInferenceServiceDenseTextEmbeddingsServiceSettings.fromMap(
new HashMap<>(
Map.of(
ServiceFields.MODEL_ID,
modelId,
ServiceFields.SIMILARITY,
similarity.toString(),
ServiceFields.DIMENSIONS,
dimensions,
ServiceFields.MAX_INPUT_TOKENS,
maxInputTokens
)
),
ConfigurationParseContext.REQUEST
);
assertThat(serviceSettings.modelId(), is(modelId));
assertThat(serviceSettings.similarity(), is(similarity));
assertThat(serviceSettings.dimensions(), is(dimensions));
assertThat(serviceSettings.maxInputTokens(), is(maxInputTokens));
}
public void testToXContent_WritesAllFields() throws IOException {
var modelId = "my-dense-model";
var similarity = SimilarityMeasure.DOT_PRODUCT;
var dimensions = 1024;
var maxInputTokens = 256;
var rateLimitSettings = new RateLimitSettings(5000);
var serviceSettings = new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
similarity,
dimensions,
maxInputTokens,
rateLimitSettings
);
XContentBuilder builder = XContentFactory.contentBuilder(XContentType.JSON);
serviceSettings.toXContent(builder, null);
String xContentResult = Strings.toString(builder);
String expectedResult = Strings.format(
"""
{"similarity":"%s","dimensions":%d,"max_input_tokens":%d,"model_id":"%s","rate_limit":{"requests_per_minute":%d}}""",
similarity,
dimensions,
maxInputTokens,
modelId,
rateLimitSettings.requestsPerTimeUnit()
);
assertThat(xContentResult, is(expectedResult));
}
public void testToXContent_WritesOnlyNonNullFields() throws IOException {
var modelId = "my-dense-model";
var rateLimitSettings = new RateLimitSettings(2000);
var serviceSettings = new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
null, // similarity
null, // dimensions
null, // maxInputTokens
rateLimitSettings
);
XContentBuilder builder = XContentFactory.contentBuilder(XContentType.JSON);
serviceSettings.toXContent(builder, null);
String xContentResult = Strings.toString(builder);
assertThat(xContentResult, is(Strings.format("""
{"model_id":"%s","rate_limit":{"requests_per_minute":%d}}""", modelId, rateLimitSettings.requestsPerTimeUnit())));
}
public void testToXContentFragmentOfExposedFields() throws IOException {
var modelId = "my-dense-model";
var rateLimitSettings = new RateLimitSettings(1500);
var serviceSettings = new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
SimilarityMeasure.COSINE,
512,
128,
rateLimitSettings
);
XContentBuilder builder = XContentFactory.contentBuilder(XContentType.JSON);
builder.startObject();
serviceSettings.toXContentFragmentOfExposedFields(builder, null);
builder.endObject();
String xContentResult = Strings.toString(builder);
// Only model_id and rate_limit should be in exposed fields
assertThat(xContentResult, is(Strings.format("""
{"model_id":"%s","rate_limit":{"requests_per_minute":%d}}""", modelId, rateLimitSettings.requestsPerTimeUnit())));
}
public static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings createRandom() {
var modelId = randomAlphaOfLength(10);
var similarity = SimilarityMeasure.COSINE;
var dimensions = randomBoolean() ? randomIntBetween(1, 1024) : null;
var maxInputTokens = randomBoolean() ? randomIntBetween(128, 256) : null;
var rateLimitSettings = randomBoolean() ? new RateLimitSettings(randomIntBetween(1, 10000)) : null;
return new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
modelId,
similarity,
dimensions,
maxInputTokens,
rateLimitSettings
);
}
}

View file

@ -0,0 +1,147 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.elasticsearch.common.Strings;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentFactory;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceUsageContext;
import java.io.IOException;
import java.util.List;
import static org.elasticsearch.xpack.inference.MatchersUtils.equalToIgnoringWhitespaceInJsonString;
public class ElasticInferenceServiceDenseTextEmbeddingsRequestEntityTests extends ESTestCase {
public void testToXContent_SingleInput_UnspecifiedUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("abc"),
"my-model-id",
ElasticInferenceServiceUsageContext.UNSPECIFIED
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": ["abc"],
"model": "my-model-id"
}"""));
}
public void testToXContent_MultipleInputs_UnspecifiedUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("abc", "def"),
"my-model-id",
ElasticInferenceServiceUsageContext.UNSPECIFIED
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": [
"abc",
"def"
],
"model": "my-model-id"
}
"""));
}
public void testToXContent_SingleInput_SearchUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("abc"),
"my-model-id",
ElasticInferenceServiceUsageContext.SEARCH
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": ["abc"],
"model": "my-model-id",
"usage_context": "search"
}
"""));
}
public void testToXContent_SingleInput_IngestUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("abc"),
"my-model-id",
ElasticInferenceServiceUsageContext.INGEST
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": ["abc"],
"model": "my-model-id",
"usage_context": "ingest"
}
"""));
}
public void testToXContent_MultipleInputs_SearchUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("first input", "second input", "third input"),
"my-dense-model",
ElasticInferenceServiceUsageContext.SEARCH
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": [
"first input",
"second input",
"third input"
],
"model": "my-dense-model",
"usage_context": "search"
}
"""));
}
public void testToXContent_MultipleInputs_IngestUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of("document one", "document two"),
"embedding-model-v2",
ElasticInferenceServiceUsageContext.INGEST
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": [
"document one",
"document two"
],
"model": "embedding-model-v2",
"usage_context": "ingest"
}
"""));
}
public void testToXContent_EmptyInput_UnspecifiedUsageContext() throws IOException {
var entity = new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
List.of(""),
"my-model-id",
ElasticInferenceServiceUsageContext.UNSPECIFIED
);
String xContentString = xContentEntityToString(entity);
assertThat(xContentString, equalToIgnoringWhitespaceInJsonString("""
{
"input": [""],
"model": "my-model-id"
}
"""));
}
private String xContentEntityToString(ElasticInferenceServiceDenseTextEmbeddingsRequestEntity entity) throws IOException {
XContentBuilder builder = XContentFactory.contentBuilder(XContentType.JSON);
entity.toXContent(builder, null);
return Strings.toString(builder);
}
}

View file

@ -0,0 +1,165 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.HttpPost;
import org.elasticsearch.inference.InputType;
import org.elasticsearch.tasks.Task;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xcontent.XContentType;
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModelTests;
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
import java.io.IOException;
import java.util.List;
import static org.elasticsearch.xpack.inference.external.http.Utils.entityAsMap;
import static org.elasticsearch.xpack.inference.services.elastic.request.ElasticInferenceServiceRequestTests.randomElasticInferenceServiceRequestMetadata;
import static org.hamcrest.Matchers.aMapWithSize;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.instanceOf;
import static org.hamcrest.Matchers.is;
import static org.hamcrest.Matchers.nullValue;
public class ElasticInferenceServiceDenseTextEmbeddingsRequestTests extends ESTestCase {
public void testCreateHttpRequest_UsageContextSearch() throws IOException {
var url = "http://eis-gateway.com";
var input = List.of("input text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.SEARCH);
var httpRequest = request.createHttpRequest();
assertThat(httpRequest.httpRequestBase(), instanceOf(HttpPost.class));
var httpPost = (HttpPost) httpRequest.httpRequestBase();
assertThat(httpPost.getLastHeader(HttpHeaders.CONTENT_TYPE).getValue(), is(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(httpPost.getEntity().getContent());
assertThat(requestMap.size(), equalTo(3));
assertThat(requestMap.get("input"), is(input));
assertThat(requestMap.get("model"), is(modelId));
assertThat(requestMap.get("usage_context"), equalTo("search"));
}
public void testCreateHttpRequest_UsageContextIngest() throws IOException {
var url = "http://eis-gateway.com";
var input = List.of("ingest text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.INGEST);
var httpRequest = request.createHttpRequest();
assertThat(httpRequest.httpRequestBase(), instanceOf(HttpPost.class));
var httpPost = (HttpPost) httpRequest.httpRequestBase();
assertThat(httpPost.getLastHeader(HttpHeaders.CONTENT_TYPE).getValue(), is(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(httpPost.getEntity().getContent());
assertThat(requestMap.size(), equalTo(3));
assertThat(requestMap.get("input"), is(input));
assertThat(requestMap.get("model"), is(modelId));
assertThat(requestMap.get("usage_context"), equalTo("ingest"));
}
public void testCreateHttpRequest_UsageContextUnspecified() throws IOException {
var url = "http://eis-gateway.com";
var input = List.of("unspecified text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.UNSPECIFIED);
var httpRequest = request.createHttpRequest();
assertThat(httpRequest.httpRequestBase(), instanceOf(HttpPost.class));
var httpPost = (HttpPost) httpRequest.httpRequestBase();
assertThat(httpPost.getLastHeader(HttpHeaders.CONTENT_TYPE).getValue(), is(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(httpPost.getEntity().getContent());
assertThat(requestMap, aMapWithSize(2));
assertThat(requestMap.get("input"), is(input));
assertThat(requestMap.get("model"), is(modelId));
// usage_context should not be present for UNSPECIFIED
}
public void testCreateHttpRequest_MultipleInputs() throws IOException {
var url = "http://eis-gateway.com";
var inputs = List.of("first input", "second input", "third input");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, inputs, InputType.SEARCH);
var httpRequest = request.createHttpRequest();
assertThat(httpRequest.httpRequestBase(), instanceOf(HttpPost.class));
var httpPost = (HttpPost) httpRequest.httpRequestBase();
assertThat(httpPost.getLastHeader(HttpHeaders.CONTENT_TYPE).getValue(), is(XContentType.JSON.mediaType()));
var requestMap = entityAsMap(httpPost.getEntity().getContent());
assertThat(requestMap.size(), equalTo(3));
assertThat(requestMap.get("input"), is(inputs));
assertThat(requestMap.get("model"), is(modelId));
assertThat(requestMap.get("usage_context"), equalTo("search"));
}
public void testTraceContextPropagatedThroughHTTPHeaders() {
var url = "http://eis-gateway.com";
var input = List.of("input text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.UNSPECIFIED);
var httpRequest = request.createHttpRequest();
assertThat(httpRequest.httpRequestBase(), instanceOf(HttpPost.class));
var httpPost = (HttpPost) httpRequest.httpRequestBase();
var traceParent = request.getTraceContext().traceParent();
var traceState = request.getTraceContext().traceState();
assertThat(httpPost.getLastHeader(Task.TRACE_PARENT_HTTP_HEADER).getValue(), is(traceParent));
assertThat(httpPost.getLastHeader(Task.TRACE_STATE).getValue(), is(traceState));
}
public void testTruncate_ReturnsSameInstance() {
var url = "http://eis-gateway.com";
var input = List.of("input text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.UNSPECIFIED);
var truncatedRequest = request.truncate();
// Dense text embeddings request doesn't support truncation, should return same instance
assertThat(truncatedRequest, is(request));
}
public void testGetTruncationInfo_ReturnsNull() {
var url = "http://eis-gateway.com";
var input = List.of("input text");
var modelId = "my-dense-model-id";
var request = createRequest(url, modelId, input, InputType.UNSPECIFIED);
// Dense text embeddings request doesn't support truncation info
assertThat(request.getTruncationInfo(), is(nullValue()));
}
private ElasticInferenceServiceDenseTextEmbeddingsRequest createRequest(
String url,
String modelId,
List<String> inputs,
InputType inputType
) {
var embeddingsModel = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(url, modelId);
return new ElasticInferenceServiceDenseTextEmbeddingsRequest(
embeddingsModel,
inputs,
new TraceContext(randomAlphaOfLength(10), randomAlphaOfLength(10)),
randomElasticInferenceServiceRequestMetadata(),
inputType
);
}
}

View file

@ -0,0 +1,124 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0; you may not use this file except in compliance with the Elastic License
* 2.0.
*/
package org.elasticsearch.xpack.inference.services.elastic.response;
import org.apache.http.HttpResponse;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
import org.elasticsearch.xpack.inference.external.http.HttpResult;
import org.elasticsearch.xpack.inference.external.request.Request;
import org.elasticsearch.xpack.inference.external.response.elastic.ElasticInferenceServiceDenseTextEmbeddingsResponseEntity;
import java.nio.charset.StandardCharsets;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.Matchers.hasSize;
import static org.mockito.Mockito.mock;
public class ElasticInferenceServiceDenseTextEmbeddingsResponseEntityTests extends ESTestCase {
public void testDenseTextEmbeddingsResponse_SingleEmbeddingInData_NoMeta() throws Exception {
String responseJson = """
{
"data": [
[
1.23,
4.56,
7.89
]
]
}
""";
TextEmbeddingFloatResults parsedResults = ElasticInferenceServiceDenseTextEmbeddingsResponseEntity.fromResponse(
mock(Request.class),
new HttpResult(mock(HttpResponse.class), responseJson.getBytes(StandardCharsets.UTF_8))
);
assertThat(parsedResults.embeddings(), hasSize(1));
var embedding = parsedResults.embeddings().get(0);
assertThat(embedding.values(), is(new float[] { 1.23f, 4.56f, 7.89f }));
}
public void testDenseTextEmbeddingsResponse_MultipleEmbeddingsInData_NoMeta() throws Exception {
String responseJson = """
{
"data": [
[
1.23,
4.56,
7.89
],
[
0.12,
0.34,
0.56
]
]
}
""";
TextEmbeddingFloatResults parsedResults = ElasticInferenceServiceDenseTextEmbeddingsResponseEntity.fromResponse(
mock(Request.class),
new HttpResult(mock(HttpResponse.class), responseJson.getBytes(StandardCharsets.UTF_8))
);
assertThat(parsedResults.embeddings(), hasSize(2));
var firstEmbedding = parsedResults.embeddings().get(0);
assertThat(firstEmbedding.values(), is(new float[] { 1.23f, 4.56f, 7.89f }));
var secondEmbedding = parsedResults.embeddings().get(1);
assertThat(secondEmbedding.values(), is(new float[] { 0.12f, 0.34f, 0.56f }));
}
public void testDenseTextEmbeddingsResponse_EmptyData() throws Exception {
String responseJson = """
{
"data": []
}
""";
TextEmbeddingFloatResults parsedResults = ElasticInferenceServiceDenseTextEmbeddingsResponseEntity.fromResponse(
mock(Request.class),
new HttpResult(mock(HttpResponse.class), responseJson.getBytes(StandardCharsets.UTF_8))
);
assertThat(parsedResults.embeddings(), hasSize(0));
}
public void testDenseTextEmbeddingsResponse_SingleEmbeddingInData_IgnoresMeta() throws Exception {
String responseJson = """
{
"data": [
[
-1.0,
0.0,
1.0
]
],
"meta": {
"usage": {
"total_tokens": 5
}
}
}
""";
TextEmbeddingFloatResults parsedResults = ElasticInferenceServiceDenseTextEmbeddingsResponseEntity.fromResponse(
mock(Request.class),
new HttpResult(mock(HttpResponse.class), responseJson.getBytes(StandardCharsets.UTF_8))
);
assertThat(parsedResults.embeddings(), hasSize(1));
var embedding = parsedResults.embeddings().get(0);
assertThat(embedding.values(), is(new float[] { -1.0f, 0.0f, 1.0f }));
}
}