mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-06-28 09:28:55 -04:00
[DOCS] Remove ES quickstart. (#87939)
* [DOCS] Remove ES quickstart. * Fix xref * Fix xrefs * Add redirect
This commit is contained in:
parent
0e7fee8db4
commit
b6eb971fdc
3 changed files with 9 additions and 523 deletions
|
@ -1,512 +0,0 @@
|
|||
[chapter]
|
||||
[[getting-started]]
|
||||
= Quick start
|
||||
|
||||
This guide helps beginners learn how to:
|
||||
|
||||
* Install and run {es} in a test environment
|
||||
* Add data to {es}
|
||||
* Search and sort data
|
||||
* Extract fields from unstructured content during a search
|
||||
|
||||
[discrete]
|
||||
[[run-elasticsearch]]
|
||||
=== Run {es}
|
||||
|
||||
The simplest way to set up {es} is to create a managed deployment with {ess} on
|
||||
{ecloud}. If you prefer to manage your own test environment, you can install and
|
||||
run {es} using Docker.
|
||||
|
||||
include::{es-repo-dir}/tab-widgets/quick-start-install-widget.asciidoc[]
|
||||
|
||||
[discrete]
|
||||
[[send-requests-to-elasticsearch]]
|
||||
=== Send requests to {es}
|
||||
|
||||
You send data and other requests to {es} using REST APIs. This lets you interact
|
||||
with {es} using any client that sends HTTP requests, such as
|
||||
https://curl.se[curl]. You can also use {kib}'s console to send requests to
|
||||
{es}.
|
||||
|
||||
include::{es-repo-dir}/tab-widgets/api-call-widget.asciidoc[]
|
||||
|
||||
[discrete]
|
||||
[[add-data]]
|
||||
=== Add data
|
||||
|
||||
You add data to {es} as JSON objects called documents. {es} stores these
|
||||
documents in searchable indices.
|
||||
|
||||
For time series data, such as logs and metrics, you typically add documents to a
|
||||
data stream made up of multiple auto-generated backing indices.
|
||||
|
||||
A data stream requires an index template that matches its name. {es} uses this
|
||||
template to configure the stream's backing indices. Documents sent to a data
|
||||
stream must have a `@timestamp` field.
|
||||
|
||||
[discrete]
|
||||
[[add-single-document]]
|
||||
==== Add a single document
|
||||
|
||||
Submit the following indexing request to add a single log entry to the
|
||||
`logs-my_app-default` data stream. Since `logs-my_app-default` doesn't exist, the
|
||||
request automatically creates it using the built-in `logs-*-*` index template.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
POST logs-my_app-default/_doc
|
||||
{
|
||||
"@timestamp": "2099-05-06T16:21:15.000Z",
|
||||
"event": {
|
||||
"original": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
|
||||
}
|
||||
}
|
||||
----
|
||||
// TEST[s/_doc/_doc?refresh=wait_for/]
|
||||
|
||||
The response includes metadata that {es} generates for the document:
|
||||
|
||||
* The backing `_index` that contains the document. {es} automatically generates
|
||||
the names of backing indices.
|
||||
* A unique `_id` for the document within the index.
|
||||
|
||||
[source,console-result]
|
||||
----
|
||||
{
|
||||
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
|
||||
"_id": "gl5MJXMBMk1dGnErnBW8",
|
||||
"_version": 1,
|
||||
"result": "created",
|
||||
"_shards": {
|
||||
"total": 2,
|
||||
"successful": 1,
|
||||
"failed": 0
|
||||
},
|
||||
"_seq_no": 0,
|
||||
"_primary_term": 1
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/"_index": ".ds-logs-my_app-default-2099-05-06-000001"/"_index": $body._index/]
|
||||
// TESTRESPONSE[s/"_id": "gl5MJXMBMk1dGnErnBW8"/"_id": $body._id/]
|
||||
|
||||
[discrete]
|
||||
[[add-multiple-documents]]
|
||||
==== Add multiple documents
|
||||
|
||||
Use the `_bulk` endpoint to add multiple documents in one request. Bulk data
|
||||
must be newline-delimited JSON (NDJSON). Each line must end in a newline
|
||||
character (`\n`), including the last line.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
PUT logs-my_app-default/_bulk
|
||||
{ "create": { } }
|
||||
{ "@timestamp": "2099-05-07T16:24:32.000Z", "event": { "original": "192.0.2.242 - - [07/May/2020:16:24:32 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0" } }
|
||||
{ "create": { } }
|
||||
{ "@timestamp": "2099-05-08T16:25:42.000Z", "event": { "original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } }
|
||||
----
|
||||
// TEST[continued]
|
||||
// TEST[s/_bulk/_bulk?refresh=wait_for/]
|
||||
|
||||
[discrete]
|
||||
[[qs-search-data]]
|
||||
=== Search data
|
||||
|
||||
Indexed documents are available for search in near real-time. The following
|
||||
search matches all log entries in `logs-my_app-default` and sorts them by
|
||||
`@timestamp` in descending order.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"query": {
|
||||
"match_all": { }
|
||||
},
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
By default, the `hits` section of the response includes up to the first 10
|
||||
documents that match the search. The `_source` of each hit contains the original
|
||||
JSON object submitted during indexing.
|
||||
|
||||
[source,console-result]
|
||||
----
|
||||
{
|
||||
"took": 2,
|
||||
"timed_out": false,
|
||||
"_shards": {
|
||||
"total": 1,
|
||||
"successful": 1,
|
||||
"skipped": 0,
|
||||
"failed": 0
|
||||
},
|
||||
"hits": {
|
||||
"total": {
|
||||
"value": 3,
|
||||
"relation": "eq"
|
||||
},
|
||||
"max_score": null,
|
||||
"hits": [
|
||||
{
|
||||
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
|
||||
"_id": "PdjWongB9KPnaVm2IyaL",
|
||||
"_score": null,
|
||||
"_source": {
|
||||
"@timestamp": "2099-05-08T16:25:42.000Z",
|
||||
"event": {
|
||||
"original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
|
||||
}
|
||||
},
|
||||
"sort": [
|
||||
4081940742000
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
}
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/"took": 2/"took": $body.took/]
|
||||
// TESTRESPONSE[s/"_index": ".ds-logs-my_app-default-2099-05-06-000001"/"_index": $body.hits.hits.0._index/]
|
||||
// TESTRESPONSE[s/"_id": "PdjWongB9KPnaVm2IyaL"/"_id": $body.hits.hits.0._id/]
|
||||
// TESTRESPONSE[s/\.\.\./$body.hits.hits.1,$body.hits.hits.2/]
|
||||
|
||||
[discrete]
|
||||
[[get-specific-fields]]
|
||||
==== Get specific fields
|
||||
|
||||
Parsing the entire `_source` is unwieldy for large documents. To exclude it from
|
||||
the response, set the `_source` parameter to `false`. Instead, use the `fields`
|
||||
parameter to retrieve the fields you want.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"query": {
|
||||
"match_all": { }
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
// TEST[s/_search/_search?filter_path=hits.hits&size=1/]
|
||||
|
||||
The response contains each hit's `fields` values as a flat array.
|
||||
|
||||
[source,console-result]
|
||||
----
|
||||
{
|
||||
...
|
||||
"hits": {
|
||||
...
|
||||
"hits": [
|
||||
{
|
||||
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
|
||||
"_id": "PdjWongB9KPnaVm2IyaL",
|
||||
"_score": null,
|
||||
"fields": {
|
||||
"@timestamp": [
|
||||
"2099-05-08T16:25:42.000Z"
|
||||
]
|
||||
},
|
||||
"sort": [
|
||||
4081940742000
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
}
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/\.\.\.//]
|
||||
// TESTRESPONSE[s/"_index": ".ds-logs-my_app-default-2099-05-06-000001"/"_index": $body.hits.hits.0._index/]
|
||||
// TESTRESPONSE[s/"_id": "PdjWongB9KPnaVm2IyaL"/"_id": $body.hits.hits.0._id/]
|
||||
// TESTRESPONSE[s/4081940742000\n \]\n \},\n/4081940742000\]}/]
|
||||
|
||||
[discrete]
|
||||
[[search-date-range]]
|
||||
==== Search a date range
|
||||
|
||||
To search across a specific time or IP range, use a `range` query.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"query": {
|
||||
"range": {
|
||||
"@timestamp": {
|
||||
"gte": "2099-05-05",
|
||||
"lt": "2099-05-08"
|
||||
}
|
||||
}
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
You can use date math to define relative time ranges. The following query
|
||||
searches for data from the past day, which won't match any log entries in
|
||||
`logs-my_app-default`.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"query": {
|
||||
"range": {
|
||||
"@timestamp": {
|
||||
"gte": "now-1d/d",
|
||||
"lt": "now/d"
|
||||
}
|
||||
}
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
[discrete]
|
||||
[[extract-fields]]
|
||||
==== Extract fields from unstructured content
|
||||
|
||||
You can extract <<runtime-search-request,runtime fields>> from unstructured
|
||||
content, such as log messages, during a search.
|
||||
|
||||
Use the following search to extract the `source.ip` runtime field from
|
||||
`event.original`. To include it in the response, add `source.ip` to the `fields`
|
||||
parameter.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"runtime_mappings": {
|
||||
"source.ip": {
|
||||
"type": "ip",
|
||||
"script": """
|
||||
String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ "event.original" ].value)?.sourceip;
|
||||
if (sourceip != null) emit(sourceip);
|
||||
"""
|
||||
}
|
||||
},
|
||||
"query": {
|
||||
"range": {
|
||||
"@timestamp": {
|
||||
"gte": "2099-05-05",
|
||||
"lt": "2099-05-08"
|
||||
}
|
||||
}
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp",
|
||||
"source.ip"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
[discrete]
|
||||
[[combine-queries]]
|
||||
==== Combine queries
|
||||
|
||||
You can use the `bool` query to combine multiple queries. The following search
|
||||
combines two `range` queries: one on `@timestamp` and one on the `source.ip`
|
||||
runtime field.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"runtime_mappings": {
|
||||
"source.ip": {
|
||||
"type": "ip",
|
||||
"script": """
|
||||
String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ "event.original" ].value)?.sourceip;
|
||||
if (sourceip != null) emit(sourceip);
|
||||
"""
|
||||
}
|
||||
},
|
||||
"query": {
|
||||
"bool": {
|
||||
"filter": [
|
||||
{
|
||||
"range": {
|
||||
"@timestamp": {
|
||||
"gte": "2099-05-05",
|
||||
"lt": "2099-05-08"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"range": {
|
||||
"source.ip": {
|
||||
"gte": "192.0.2.0",
|
||||
"lte": "192.0.2.240"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp",
|
||||
"source.ip"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
[discrete]
|
||||
[[aggregate-data]]
|
||||
==== Aggregate data
|
||||
|
||||
Use aggregations to summarize data as metrics, statistics, or other analytics.
|
||||
|
||||
The following search uses an aggregation to calculate the
|
||||
`average_response_size` using the `http.response.body.bytes` runtime field. The
|
||||
aggregation only runs on documents that match the `query`.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
GET logs-my_app-default/_search
|
||||
{
|
||||
"runtime_mappings": {
|
||||
"http.response.body.bytes": {
|
||||
"type": "long",
|
||||
"script": """
|
||||
String bytes=grok('%{COMMONAPACHELOG}').extract(doc[ "event.original" ].value)?.bytes;
|
||||
if (bytes != null) emit(Integer.parseInt(bytes));
|
||||
"""
|
||||
}
|
||||
},
|
||||
"aggs": {
|
||||
"average_response_size":{
|
||||
"avg": {
|
||||
"field": "http.response.body.bytes"
|
||||
}
|
||||
}
|
||||
},
|
||||
"query": {
|
||||
"bool": {
|
||||
"filter": [
|
||||
{
|
||||
"range": {
|
||||
"@timestamp": {
|
||||
"gte": "2099-05-05",
|
||||
"lt": "2099-05-08"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"fields": [
|
||||
"@timestamp",
|
||||
"http.response.body.bytes"
|
||||
],
|
||||
"_source": false,
|
||||
"sort": [
|
||||
{
|
||||
"@timestamp": "desc"
|
||||
}
|
||||
]
|
||||
}
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
The response’s `aggregations` object contains aggregation results.
|
||||
|
||||
[source,console-result]
|
||||
----
|
||||
{
|
||||
...
|
||||
"aggregations" : {
|
||||
"average_response_size" : {
|
||||
"value" : 12368.0
|
||||
}
|
||||
}
|
||||
}
|
||||
----
|
||||
// TESTRESPONSE[s/\.\.\./"took": "$body.took", "timed_out": false, "_shards": "$body._shards", "hits": "$body.hits",/]
|
||||
|
||||
[discrete]
|
||||
[[explore-more-search-options]]
|
||||
==== Explore more search options
|
||||
|
||||
To keep exploring, index more data to your data stream and check out <<common-search-options>>.
|
||||
|
||||
[discrete]
|
||||
[[clean-up]]
|
||||
=== Clean up
|
||||
|
||||
When you're done, delete your test data stream and its backing indices.
|
||||
|
||||
[source,console]
|
||||
----
|
||||
DELETE _data_stream/logs-my_app-default
|
||||
----
|
||||
// TEST[continued]
|
||||
|
||||
You can also delete your test deployment.
|
||||
|
||||
include::{es-repo-dir}/tab-widgets/quick-start-cleanup-widget.asciidoc[]
|
||||
|
||||
[discrete]
|
||||
[[whats-next]]
|
||||
=== What's next?
|
||||
|
||||
* Get the most out of your time series data by setting up data tiers and
|
||||
{ilm-init}. See <<use-elasticsearch-for-time-series-data>>.
|
||||
|
||||
* Use {fleet} and {agent} to collect logs and metrics directly from your data
|
||||
sources and send them to {es}. See the
|
||||
{observability-guide}/ingest-logs-metrics-uptime.html[Ingest logs, metrics, and uptime data with {agent}].
|
||||
|
||||
* Use {kib} to explore, visualize, and manage your {es} data. See the
|
||||
{kibana-ref}/get-started.html[{kib} quick start guide].
|
|
@ -15,8 +15,6 @@ include::intro.asciidoc[]
|
|||
|
||||
include::release-notes/highlights.asciidoc[]
|
||||
|
||||
include::getting-started.asciidoc[]
|
||||
|
||||
include::setup.asciidoc[]
|
||||
|
||||
include::upgrade.asciidoc[]
|
||||
|
|
|
@ -1722,27 +1722,27 @@ See <<rollup-apis>>.
|
|||
[role="exclude",id="getting-started-install"]
|
||||
=== Get {es} up and running
|
||||
|
||||
See <<run-elasticsearch>>.
|
||||
See <<configuring-stack-security>>.
|
||||
|
||||
[role="exclude",id="getting-started"]
|
||||
=== Quick start
|
||||
|
||||
See {estc-welcome}/getting-started-general-purpose.html[Set up a general purpose Elastic deployment].
|
||||
|
||||
[role="exclude",id="getting-started-index"]
|
||||
=== Index some documents
|
||||
|
||||
See <<add-data>>.
|
||||
See {estc-welcome}/getting-started-general-purpose.html#gp-gs-add-data[Add data].
|
||||
|
||||
[role="exclude",id="getting-started-search"]
|
||||
=== Start searching
|
||||
|
||||
See <<qs-search-data>>.
|
||||
See {estc-welcome}/getting-started-general-purpose.html#gp-gs-search-data[Search and sort data].
|
||||
|
||||
[role="exclude",id="getting-started-aggregations"]
|
||||
=== Analyze results with aggregations
|
||||
|
||||
See <<getting-started>>.
|
||||
|
||||
[role="exclude",id="getting-started-next-steps"]
|
||||
=== Where to go from here
|
||||
|
||||
See <<getting-started>>.
|
||||
See <<search-aggregations>>.
|
||||
|
||||
[role="exclude",id="jvm-options"]
|
||||
=== Setting JVM options
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue