Bugfix: fixed scroll with knn query (#126035)

Although scrolling is not recommended for knn queries, it is effective.
But I found a bug that when use scroll in the knn query, the But I found
a bug that when using scroll in knn query, knn_score_doc will be lost in
query phase, which means knn query does not work. In addition, the
operations for directly querying the node where the shard is located and
querying the node with transport are different. It can be reproduced on
the local node. Because the query phase uses the previous
ShardSearchRequest object stored before the dfs phase. But when it run
in the local node, it don't do the encode and decode processso the
operation is correct. I wrote an IT to reproduce it and fixed it by
adding the new source to the LegacyReaderContext.
This commit is contained in:
weizijun 2025-04-20 23:55:59 +08:00 committed by GitHub
parent c662590b6d
commit d854b1c625
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 147 additions and 0 deletions

View file

@ -0,0 +1,5 @@
pr: 126035
summary: Fix top level knn search with scroll
area: Vector Search
type: bug
issues: []

View file

@ -0,0 +1,137 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the "Elastic License
* 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
* Public License v 1"; you may not use this file except in compliance with, at
* your election, the "Elastic License 2.0", the "GNU Affero General Public
* License v3.0 only", or the "Server Side Public License, v 1".
*/
package org.elasticsearch.search;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.internal.Client;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.core.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.vectors.KnnSearchBuilder;
import org.elasticsearch.search.vectors.KnnVectorQueryBuilder;
import org.elasticsearch.test.ESIntegTestCase;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentFactory;
import java.util.List;
import static org.hamcrest.Matchers.notNullValue;
@ESIntegTestCase.ClusterScope(minNumDataNodes = 2)
public class KnnSearchIT extends ESIntegTestCase {
private static final String INDEX_NAME = "test_knn_index";
private static final String VECTOR_FIELD = "vector";
private XContentBuilder createKnnMapping() throws Exception {
return XContentFactory.jsonBuilder()
.startObject()
.startObject("properties")
.startObject(VECTOR_FIELD)
.field("type", "dense_vector")
.field("dims", 2)
.field("index", true)
.field("similarity", "l2_norm")
.startObject("index_options")
.field("type", "hnsw")
.endObject()
.endObject()
.startObject("category")
.field("type", "keyword")
.endObject()
.endObject()
.endObject();
}
public void testKnnSearchWithScroll() throws Exception {
final int numShards = randomIntBetween(1, 3);
Client client = client();
client.admin()
.indices()
.prepareCreate(INDEX_NAME)
.setSettings(Settings.builder().put("index.number_of_shards", numShards))
.setMapping(createKnnMapping())
.get();
final int count = 100;
for (int i = 0; i < count; i++) {
XContentBuilder source = XContentFactory.jsonBuilder()
.startObject()
.field(VECTOR_FIELD, new float[] { i * 0.1f, i * 0.1f })
.field("category", i >= 90 ? "last_ten" : null)
.endObject();
client.prepareIndex(INDEX_NAME).setSource(source).get();
}
refresh(INDEX_NAME);
final int k = randomIntBetween(11, 15);
// test top level knn search
{
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.knnSearch(List.of(new KnnSearchBuilder(VECTOR_FIELD, new float[] { 0, 0 }, k, 100, null, null)));
executeScrollSearch(client, sourceBuilder, k);
}
// test top level knn search + another query
{
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.knnSearch(List.of(new KnnSearchBuilder(VECTOR_FIELD, new float[] { 0, 0 }, k, 100, null, null)));
sourceBuilder.query(QueryBuilders.existsQuery("category").boost(10));
executeScrollSearch(client, sourceBuilder, k + 10);
}
// test knn query
{
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.query(new KnnVectorQueryBuilder(VECTOR_FIELD, new float[] { 0, 0 }, k, 100, null, null));
executeScrollSearch(client, sourceBuilder, k * numShards);
}
// test knn query + another query
{
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.query(
QueryBuilders.boolQuery()
.should(new KnnVectorQueryBuilder(VECTOR_FIELD, new float[] { 0, 0 }, k, 100, null, null))
.should(QueryBuilders.existsQuery("category").boost(10))
);
executeScrollSearch(client, sourceBuilder, k * numShards + 10);
}
}
private static void executeScrollSearch(Client client, SearchSourceBuilder sourceBuilder, int expectedNumHits) {
SearchRequest searchRequest = new SearchRequest(INDEX_NAME);
searchRequest.source(sourceBuilder).scroll(TimeValue.timeValueMinutes(1));
SearchResponse searchResponse = client.search(searchRequest).actionGet();
int hitsCollected = 0;
float prevScore = Float.POSITIVE_INFINITY;
try {
do {
assertThat(searchResponse.getScrollId(), notNullValue());
assertEquals(expectedNumHits, searchResponse.getHits().getTotalHits().value());
// assert correct order of returned hits
for (var searchHit : searchResponse.getHits()) {
assert (searchHit.getScore() <= prevScore);
prevScore = searchHit.getScore();
hitsCollected += 1;
}
searchResponse.decRef();
searchResponse = client().prepareSearchScroll(searchResponse.getScrollId()).setScroll(TimeValue.timeValueMinutes(1)).get();
} while (searchResponse.getHits().getHits().length > 0);
} finally {
assertEquals(expectedNumHits, hitsCollected);
clearScroll(searchResponse.getScrollId());
searchResponse.decRef();
}
}
}

View file

@ -72,6 +72,11 @@ public final class LegacyReaderContext extends ReaderContext {
@Override @Override
public ShardSearchRequest getShardSearchRequest(ShardSearchRequest other) { public ShardSearchRequest getShardSearchRequest(ShardSearchRequest other) {
if (other != null) {
// The top level knn search modifies the source after the DFS phase.
// so we need to update the source stored in the context.
shardSearchRequest.source(other.source());
}
return shardSearchRequest; return shardSearchRequest;
} }