mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-06-28 09:28:55 -04:00
Add working dense text embeddings integration with default endpoint. Some tests WIP
This commit is contained in:
parent
6e4cb8142b
commit
f054dca0b3
19 changed files with 1092 additions and 214 deletions
|
@ -157,6 +157,7 @@ public class TransportVersions {
|
|||
public static final TransportVersion INTRODUCE_LIFECYCLE_TEMPLATE_8_19 = def(8_841_0_14);
|
||||
public static final TransportVersion RERANK_COMMON_OPTIONS_ADDED_8_19 = def(8_841_0_15);
|
||||
public static final TransportVersion REMOTE_EXCEPTION_8_19 = def(8_841_0_16);
|
||||
public static final TransportVersion ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED_8_19 = def(8_841_0_17);
|
||||
public static final TransportVersion INITIAL_ELASTICSEARCH_9_0 = def(9_000_0_00);
|
||||
public static final TransportVersion REMOVE_SNAPSHOT_FAILURES_90 = def(9_000_0_01);
|
||||
public static final TransportVersion TRANSPORT_STATS_HANDLING_TIME_REQUIRED_90 = def(9_000_0_02);
|
||||
|
@ -214,6 +215,7 @@ public class TransportVersions {
|
|||
public static final TransportVersion ESQL_REMOVE_AGGREGATE_TYPE = def(9_045_0_00);
|
||||
public static final TransportVersion ADD_PROJECT_ID_TO_DSL_ERROR_INFO = def(9_046_0_00);
|
||||
public static final TransportVersion SEMANTIC_TEXT_CHUNKING_CONFIG = def(9_047_00_0);
|
||||
public static final TransportVersion ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED = def(9_048_00_0);
|
||||
|
||||
/*
|
||||
* STOP! READ THIS FIRST! No, really,
|
||||
|
|
|
@ -26,7 +26,7 @@ public class InferenceGetModelsWithElasticInferenceServiceIT extends BaseMockEIS
|
|||
var allModels = getAllModels();
|
||||
var chatCompletionModels = getModels("_all", TaskType.CHAT_COMPLETION);
|
||||
|
||||
assertThat(allModels, hasSize(5));
|
||||
assertThat(allModels, hasSize(6));
|
||||
assertThat(chatCompletionModels, hasSize(1));
|
||||
|
||||
for (var model : chatCompletionModels) {
|
||||
|
@ -35,6 +35,7 @@ public class InferenceGetModelsWithElasticInferenceServiceIT extends BaseMockEIS
|
|||
|
||||
assertInferenceIdTaskType(allModels, ".rainbow-sprinkles-elastic", TaskType.CHAT_COMPLETION);
|
||||
assertInferenceIdTaskType(allModels, ".elser-v2-elastic", TaskType.SPARSE_EMBEDDING);
|
||||
assertInferenceIdTaskType(allModels, ".multilingual-embed-elastic", TaskType.TEXT_EMBEDDING);
|
||||
}
|
||||
|
||||
private static void assertInferenceIdTaskType(List<Map<String, Object>> models, String inferenceId, TaskType taskType) {
|
||||
|
|
|
@ -64,7 +64,7 @@ public class InferenceGetServicesIT extends BaseMockEISAuthServerTest {
|
|||
@SuppressWarnings("unchecked")
|
||||
public void testGetServicesWithTextEmbeddingTaskType() throws IOException {
|
||||
List<Object> services = getServices(TaskType.TEXT_EMBEDDING);
|
||||
assertThat(services.size(), equalTo(15));
|
||||
assertThat(services.size(), equalTo(16));
|
||||
|
||||
String[] providers = new String[services.size()];
|
||||
for (int i = 0; i < services.size(); i++) {
|
||||
|
@ -79,6 +79,7 @@ public class InferenceGetServicesIT extends BaseMockEISAuthServerTest {
|
|||
"azureaistudio",
|
||||
"azureopenai",
|
||||
"cohere",
|
||||
"elastic",
|
||||
"elasticsearch",
|
||||
"googleaistudio",
|
||||
"googlevertexai",
|
||||
|
|
|
@ -36,6 +36,10 @@ public class MockElasticInferenceServiceAuthorizationServer implements TestRule
|
|||
{
|
||||
"model_name": "elser-v2",
|
||||
"task_types": ["embed/text/sparse"]
|
||||
},
|
||||
{
|
||||
"model_name": "multilingual-embed",
|
||||
"task_types": ["embed/text/dense"]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
|
|
@ -11,6 +11,7 @@ import org.elasticsearch.ResourceNotFoundException;
|
|||
import org.elasticsearch.action.support.PlainActionFuture;
|
||||
import org.elasticsearch.common.settings.Settings;
|
||||
import org.elasticsearch.core.TimeValue;
|
||||
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
|
||||
import org.elasticsearch.inference.InferenceService;
|
||||
import org.elasticsearch.inference.MinimalServiceSettings;
|
||||
import org.elasticsearch.inference.Model;
|
||||
|
@ -197,6 +198,10 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
|
|||
{
|
||||
"model_name": "elser-v2",
|
||||
"task_types": ["embed/text/sparse"]
|
||||
},
|
||||
{
|
||||
"model_name": "multilingual-embed",
|
||||
"task_types": ["embed/text/dense"]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@ -221,16 +226,33 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
|
|||
".rainbow-sprinkles-elastic",
|
||||
MinimalServiceSettings.chatCompletion(ElasticInferenceService.NAME),
|
||||
service
|
||||
),
|
||||
new InferenceService.DefaultConfigId(
|
||||
".multilingual-embed-elastic",
|
||||
MinimalServiceSettings.textEmbedding(
|
||||
ElasticInferenceService.NAME,
|
||||
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
|
||||
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
|
||||
DenseVectorFieldMapper.ElementType.FLOAT
|
||||
),
|
||||
service
|
||||
)
|
||||
)
|
||||
)
|
||||
);
|
||||
assertThat(service.supportedTaskTypes(), is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING)));
|
||||
assertThat(
|
||||
service.supportedTaskTypes(),
|
||||
is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.TEXT_EMBEDDING))
|
||||
);
|
||||
|
||||
PlainActionFuture<List<Model>> listener = new PlainActionFuture<>();
|
||||
service.defaultConfigs(listener);
|
||||
assertThat(listener.actionGet(TIMEOUT).get(0).getConfigurations().getInferenceEntityId(), is(".elser-v2-elastic"));
|
||||
assertThat(listener.actionGet(TIMEOUT).get(1).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
|
||||
assertThat(
|
||||
listener.actionGet(TIMEOUT).get(2).getConfigurations().getInferenceEntityId(),
|
||||
is(".multilingual-embed-elastic")
|
||||
);
|
||||
|
||||
var getModelListener = new PlainActionFuture<UnparsedModel>();
|
||||
// persists the default endpoints
|
||||
|
@ -267,6 +289,16 @@ public class InferenceRevokeDefaultEndpointsIT extends ESSingleNodeTestCase {
|
|||
".elser-v2-elastic",
|
||||
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
|
||||
service
|
||||
),
|
||||
new InferenceService.DefaultConfigId(
|
||||
".multilingual-embed-elastic",
|
||||
MinimalServiceSettings.textEmbedding(
|
||||
ElasticInferenceService.NAME,
|
||||
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
|
||||
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
|
||||
DenseVectorFieldMapper.ElementType.FLOAT
|
||||
),
|
||||
service
|
||||
)
|
||||
)
|
||||
)
|
||||
|
|
|
@ -0,0 +1,93 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.external.request.elastic;
|
||||
|
||||
import org.apache.http.HttpHeaders;
|
||||
import org.apache.http.client.methods.HttpPost;
|
||||
import org.apache.http.client.methods.HttpRequestBase;
|
||||
import org.apache.http.entity.ByteArrayEntity;
|
||||
import org.apache.http.message.BasicHeader;
|
||||
import org.elasticsearch.common.Strings;
|
||||
import org.elasticsearch.inference.InputType;
|
||||
import org.elasticsearch.xcontent.XContentType;
|
||||
import org.elasticsearch.xpack.inference.external.request.Request;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
|
||||
import org.elasticsearch.xpack.inference.telemetry.TraceContextHandler;
|
||||
|
||||
import java.net.URI;
|
||||
import java.nio.charset.StandardCharsets;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
import static org.elasticsearch.xpack.inference.external.request.elastic.ElasticInferenceServiceSparseEmbeddingsRequest.inputTypeToUsageContext;
|
||||
|
||||
public class ElasticInferenceServiceDenseTextEmbeddingsRequest extends ElasticInferenceServiceRequest {
|
||||
|
||||
private final URI uri;
|
||||
private final ElasticInferenceServiceDenseTextEmbeddingsModel model;
|
||||
private final List<String> inputs;
|
||||
private final TraceContextHandler traceContextHandler;
|
||||
private final InputType inputType;
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsRequest(
|
||||
ElasticInferenceServiceDenseTextEmbeddingsModel model,
|
||||
List<String> inputs,
|
||||
TraceContext traceContext,
|
||||
ElasticInferenceServiceRequestMetadata metadata,
|
||||
InputType inputType
|
||||
) {
|
||||
super(metadata);
|
||||
this.inputs = inputs;
|
||||
this.model = Objects.requireNonNull(model);
|
||||
this.uri = model.uri();
|
||||
this.traceContextHandler = new TraceContextHandler(traceContext);
|
||||
this.inputType = inputType;
|
||||
}
|
||||
|
||||
@Override
|
||||
public HttpRequestBase createHttpRequestBase() {
|
||||
var httpPost = new HttpPost(uri);
|
||||
var usageContext = inputTypeToUsageContext(inputType);
|
||||
var requestEntity = Strings.toString(
|
||||
new ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(inputs, model.getServiceSettings().modelId(), usageContext)
|
||||
);
|
||||
|
||||
ByteArrayEntity byteEntity = new ByteArrayEntity(requestEntity.getBytes(StandardCharsets.UTF_8));
|
||||
httpPost.setEntity(byteEntity);
|
||||
|
||||
traceContextHandler.propagateTraceContext(httpPost);
|
||||
httpPost.setHeader(new BasicHeader(HttpHeaders.CONTENT_TYPE, XContentType.JSON.mediaType()));
|
||||
|
||||
return httpPost;
|
||||
}
|
||||
|
||||
public TraceContext getTraceContext() {
|
||||
return traceContextHandler.traceContext();
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getInferenceEntityId() {
|
||||
return model.getInferenceEntityId();
|
||||
}
|
||||
|
||||
@Override
|
||||
public URI getURI() {
|
||||
return this.uri;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Request truncate() {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean[] getTruncationInfo() {
|
||||
return null;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.external.request.elastic;
|
||||
|
||||
import org.elasticsearch.core.Nullable;
|
||||
import org.elasticsearch.xcontent.ToXContentObject;
|
||||
import org.elasticsearch.xcontent.XContentBuilder;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceUsageContext;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public record ElasticInferenceServiceDenseTextEmbeddingsRequestEntity(
|
||||
List<String> inputs,
|
||||
String modelId,
|
||||
@Nullable ElasticInferenceServiceUsageContext usageContext
|
||||
) implements ToXContentObject {
|
||||
|
||||
private static final String INPUT_FIELD = "input";
|
||||
private static final String MODEL_FIELD = "model";
|
||||
private static final String USAGE_CONTEXT = "usage_context";
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsRequestEntity {
|
||||
Objects.requireNonNull(inputs);
|
||||
Objects.requireNonNull(modelId);
|
||||
}
|
||||
|
||||
@Override
|
||||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.startObject();
|
||||
builder.startArray(INPUT_FIELD);
|
||||
|
||||
for (String input : inputs) {
|
||||
builder.value(input);
|
||||
}
|
||||
|
||||
builder.endArray();
|
||||
|
||||
builder.field(MODEL_FIELD, modelId);
|
||||
|
||||
// optional field
|
||||
if ((usageContext == ElasticInferenceServiceUsageContext.UNSPECIFIED) == false) {
|
||||
builder.field(USAGE_CONTEXT, usageContext);
|
||||
}
|
||||
|
||||
builder.endObject();
|
||||
|
||||
return builder;
|
||||
}
|
||||
|
||||
}
|
|
@ -43,7 +43,9 @@ public class ElasticInferenceServiceAuthorizationResponseEntity implements Infer
|
|||
"embed/text/sparse",
|
||||
TaskType.SPARSE_EMBEDDING,
|
||||
"chat",
|
||||
TaskType.CHAT_COMPLETION
|
||||
TaskType.CHAT_COMPLETION,
|
||||
"embed/text/dense",
|
||||
TaskType.TEXT_EMBEDDING
|
||||
);
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
|
|
|
@ -0,0 +1,107 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.external.response.elastic;
|
||||
|
||||
import org.elasticsearch.common.xcontent.LoggingDeprecationHandler;
|
||||
import org.elasticsearch.common.xcontent.XContentParserUtils;
|
||||
import org.elasticsearch.xcontent.XContentFactory;
|
||||
import org.elasticsearch.xcontent.XContentParser;
|
||||
import org.elasticsearch.xcontent.XContentParserConfiguration;
|
||||
import org.elasticsearch.xcontent.XContentType;
|
||||
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
|
||||
import org.elasticsearch.xpack.inference.external.http.HttpResult;
|
||||
import org.elasticsearch.xpack.inference.external.request.Request;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
|
||||
import static org.elasticsearch.common.xcontent.XContentParserUtils.ensureExpectedToken;
|
||||
import static org.elasticsearch.common.xcontent.XContentParserUtils.parseList;
|
||||
import static org.elasticsearch.xpack.inference.external.response.XContentUtils.moveToFirstToken;
|
||||
import static org.elasticsearch.xpack.inference.external.response.XContentUtils.positionParserAtTokenAfterField;
|
||||
|
||||
public class ElasticInferenceServiceDenseTextEmbeddingsResponseEntity {
|
||||
|
||||
private static final String FAILED_TO_FIND_FIELD_TEMPLATE =
|
||||
"Failed to find required field [%s] in Elastic Inference Service dense text embeddings response";
|
||||
|
||||
/**
|
||||
* Parses the Elastic Inference Service Dense Text Embeddings response.
|
||||
*
|
||||
* For a request like:
|
||||
*
|
||||
* <pre>
|
||||
* <code>
|
||||
* {
|
||||
* "inputs": ["Embed this text", "Embed this text, too"]
|
||||
* }
|
||||
* </code>
|
||||
* </pre>
|
||||
*
|
||||
* The response would look like:
|
||||
*
|
||||
* <pre>
|
||||
* <code>
|
||||
* {
|
||||
* "data": [
|
||||
* [
|
||||
* 2.1259406,
|
||||
* 1.7073475,
|
||||
* 0.9020516
|
||||
* ],
|
||||
* (...)
|
||||
* ],
|
||||
* "meta": {
|
||||
* "usage": {...}
|
||||
* }
|
||||
* }
|
||||
* </code>
|
||||
* </pre>
|
||||
*/
|
||||
|
||||
public static TextEmbeddingFloatResults fromResponse(Request request, HttpResult response) throws IOException {
|
||||
var parserConfig = XContentParserConfiguration.EMPTY.withDeprecationHandler(LoggingDeprecationHandler.INSTANCE);
|
||||
|
||||
try (XContentParser jsonParser = XContentFactory.xContent(XContentType.JSON).createParser(parserConfig, response.body())) {
|
||||
moveToFirstToken(jsonParser);
|
||||
|
||||
XContentParser.Token token = jsonParser.currentToken();
|
||||
ensureExpectedToken(XContentParser.Token.START_OBJECT, token, jsonParser);
|
||||
|
||||
positionParserAtTokenAfterField(jsonParser, "data", FAILED_TO_FIND_FIELD_TEMPLATE);
|
||||
|
||||
List<TextEmbeddingFloatResults.Embedding> parsedEmbeddings = parseList(
|
||||
jsonParser,
|
||||
(parser, index) -> ElasticInferenceServiceDenseTextEmbeddingsResponseEntity.parseTextEmbeddingObject(parser)
|
||||
);
|
||||
|
||||
if (parsedEmbeddings.isEmpty()) {
|
||||
return new TextEmbeddingFloatResults(Collections.emptyList());
|
||||
}
|
||||
|
||||
return new TextEmbeddingFloatResults(parsedEmbeddings);
|
||||
}
|
||||
}
|
||||
|
||||
private static TextEmbeddingFloatResults.Embedding parseTextEmbeddingObject(XContentParser parser) throws IOException {
|
||||
List<Float> embeddingValueList = parseList(
|
||||
parser,
|
||||
ElasticInferenceServiceDenseTextEmbeddingsResponseEntity::parseEmbeddingFloatValueList
|
||||
);
|
||||
return TextEmbeddingFloatResults.Embedding.of(embeddingValueList);
|
||||
}
|
||||
|
||||
private static float parseEmbeddingFloatValueList(XContentParser parser) throws IOException {
|
||||
XContentParser.Token token = parser.currentToken();
|
||||
XContentParserUtils.ensureExpectedToken(XContentParser.Token.VALUE_NUMBER, token, parser);
|
||||
return parser.floatValue();
|
||||
}
|
||||
|
||||
private ElasticInferenceServiceDenseTextEmbeddingsResponseEntity() {}
|
||||
}
|
|
@ -51,11 +51,11 @@ public class ElasticInferenceServiceSparseEmbeddingsResponseEntity {
|
|||
* <code>
|
||||
* {
|
||||
* "data": [
|
||||
* {
|
||||
* "Embed": 2.1259406,
|
||||
* "this": 1.7073475,
|
||||
* "text": 0.9020516
|
||||
* },
|
||||
* [
|
||||
* 2.1259406,
|
||||
* 1.7073475,
|
||||
* 0.9020516
|
||||
* ],
|
||||
* (...)
|
||||
* ],
|
||||
* "meta": {
|
||||
|
|
|
@ -16,7 +16,9 @@ import org.elasticsearch.common.ValidationException;
|
|||
import org.elasticsearch.common.util.LazyInitializable;
|
||||
import org.elasticsearch.core.Nullable;
|
||||
import org.elasticsearch.core.TimeValue;
|
||||
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
|
||||
import org.elasticsearch.inference.ChunkedInference;
|
||||
import org.elasticsearch.inference.ChunkingSettings;
|
||||
import org.elasticsearch.inference.EmptySecretSettings;
|
||||
import org.elasticsearch.inference.EmptyTaskSettings;
|
||||
import org.elasticsearch.inference.InferenceServiceConfiguration;
|
||||
|
@ -27,6 +29,7 @@ import org.elasticsearch.inference.Model;
|
|||
import org.elasticsearch.inference.ModelConfigurations;
|
||||
import org.elasticsearch.inference.ModelSecrets;
|
||||
import org.elasticsearch.inference.SettingsConfiguration;
|
||||
import org.elasticsearch.inference.SimilarityMeasure;
|
||||
import org.elasticsearch.inference.TaskType;
|
||||
import org.elasticsearch.inference.configuration.SettingsConfigurationFieldType;
|
||||
import org.elasticsearch.rest.RestStatus;
|
||||
|
@ -36,6 +39,8 @@ import org.elasticsearch.xpack.core.inference.results.ChunkedInferenceEmbedding;
|
|||
import org.elasticsearch.xpack.core.inference.results.ChunkedInferenceError;
|
||||
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResults;
|
||||
import org.elasticsearch.xpack.core.ml.inference.results.ErrorInferenceResults;
|
||||
import org.elasticsearch.xpack.inference.chunking.ChunkingSettingsBuilder;
|
||||
import org.elasticsearch.xpack.inference.chunking.EmbeddingRequestChunker;
|
||||
import org.elasticsearch.xpack.inference.external.action.SenderExecutableAction;
|
||||
import org.elasticsearch.xpack.inference.external.http.sender.EmbeddingsInput;
|
||||
import org.elasticsearch.xpack.inference.external.http.sender.HttpRequestSender;
|
||||
|
@ -51,6 +56,8 @@ import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticI
|
|||
import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticInferenceServiceAuthorizationRequestHandler;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
|
||||
|
@ -70,6 +77,7 @@ import static org.elasticsearch.xpack.inference.services.ServiceFields.MAX_INPUT
|
|||
import static org.elasticsearch.xpack.inference.services.ServiceFields.MODEL_ID;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.createInvalidModelException;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.parsePersistedConfigErrorMsg;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.removeFromMap;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.removeFromMapOrDefaultEmpty;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.removeFromMapOrThrowIfNull;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.throwIfNotEmptyMap;
|
||||
|
@ -79,10 +87,18 @@ public class ElasticInferenceService extends SenderService {
|
|||
|
||||
public static final String NAME = "elastic";
|
||||
public static final String ELASTIC_INFERENCE_SERVICE_IDENTIFIER = "Elastic Inference Service";
|
||||
public static final Integer DENSE_TEXT_EMBEDDINGS_DIMENSIONS = 1024;
|
||||
|
||||
private static final EnumSet<TaskType> IMPLEMENTED_TASK_TYPES = EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION);
|
||||
private static final EnumSet<TaskType> IMPLEMENTED_TASK_TYPES = EnumSet.of(
|
||||
TaskType.SPARSE_EMBEDDING,
|
||||
TaskType.CHAT_COMPLETION,
|
||||
TaskType.TEXT_EMBEDDING
|
||||
);
|
||||
private static final String SERVICE_NAME = "Elastic";
|
||||
|
||||
// TODO: check with team, what makes the most sense
|
||||
private static final Integer DENSE_TEXT_EMBEDDINGS_MAX_BATCH_SIZE = 32;
|
||||
|
||||
// rainbow-sprinkles
|
||||
static final String DEFAULT_CHAT_COMPLETION_MODEL_ID_V1 = "rainbow-sprinkles";
|
||||
static final String DEFAULT_CHAT_COMPLETION_ENDPOINT_ID_V1 = defaultEndpointId(DEFAULT_CHAT_COMPLETION_MODEL_ID_V1);
|
||||
|
@ -91,10 +107,17 @@ public class ElasticInferenceService extends SenderService {
|
|||
static final String DEFAULT_ELSER_MODEL_ID_V2 = "elser-v2";
|
||||
static final String DEFAULT_ELSER_ENDPOINT_ID_V2 = defaultEndpointId(DEFAULT_ELSER_MODEL_ID_V2);
|
||||
|
||||
// multilingual-text-embed
|
||||
static final String DEFAULT_MULTILINGUAL_EMBED_MODEL_ID = "multilingual-embed";
|
||||
static final String DEFAULT_MULTILINGUAL_EMBED_ENDPOINT_ID = defaultEndpointId(DEFAULT_MULTILINGUAL_EMBED_MODEL_ID);
|
||||
|
||||
/**
|
||||
* The task types that the {@link InferenceAction.Request} can accept.
|
||||
*/
|
||||
private static final EnumSet<TaskType> SUPPORTED_INFERENCE_ACTION_TASK_TYPES = EnumSet.of(TaskType.SPARSE_EMBEDDING);
|
||||
private static final EnumSet<TaskType> SUPPORTED_INFERENCE_ACTION_TASK_TYPES = EnumSet.of(
|
||||
TaskType.SPARSE_EMBEDDING,
|
||||
TaskType.TEXT_EMBEDDING
|
||||
);
|
||||
|
||||
public static String defaultEndpointId(String modelId) {
|
||||
return Strings.format(".%s-elastic", modelId);
|
||||
|
@ -155,6 +178,31 @@ public class ElasticInferenceService extends SenderService {
|
|||
elasticInferenceServiceComponents
|
||||
),
|
||||
MinimalServiceSettings.sparseEmbedding(NAME)
|
||||
),
|
||||
DEFAULT_MULTILINGUAL_EMBED_MODEL_ID,
|
||||
new DefaultModelConfig(
|
||||
new ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
DEFAULT_MULTILINGUAL_EMBED_ENDPOINT_ID,
|
||||
TaskType.TEXT_EMBEDDING,
|
||||
NAME,
|
||||
new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
DEFAULT_MULTILINGUAL_EMBED_MODEL_ID,
|
||||
defaultDenseTextEmbeddingsSimilarity(),
|
||||
null,
|
||||
null,
|
||||
false,
|
||||
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings.DEFAULT_RATE_LIMIT_SETTINGS
|
||||
),
|
||||
EmptyTaskSettings.INSTANCE,
|
||||
EmptySecretSettings.INSTANCE,
|
||||
elasticInferenceServiceComponents
|
||||
),
|
||||
MinimalServiceSettings.textEmbedding(
|
||||
NAME,
|
||||
DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
|
||||
defaultDenseTextEmbeddingsSimilarity(),
|
||||
DenseVectorFieldMapper.ElementType.FLOAT
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
@ -270,12 +318,26 @@ public class ElasticInferenceService extends SenderService {
|
|||
TimeValue timeout,
|
||||
ActionListener<List<ChunkedInference>> listener
|
||||
) {
|
||||
// Pass-through without actually performing chunking (result will have a single chunk per input)
|
||||
ActionListener<InferenceServiceResults> inferListener = listener.delegateFailureAndWrap(
|
||||
(delegate, response) -> delegate.onResponse(translateToChunkedResults(inputs, response))
|
||||
);
|
||||
// TODO: we probably want to allow chunked inference for both sparse and dense?
|
||||
if (model instanceof ElasticInferenceServiceDenseTextEmbeddingsModel == false) {
|
||||
listener.onFailure(createInvalidModelException(model));
|
||||
return;
|
||||
}
|
||||
|
||||
doInfer(model, inputs, taskSettings, timeout, inferListener);
|
||||
ElasticInferenceServiceDenseTextEmbeddingsModel elasticInferenceServiceModel =
|
||||
(ElasticInferenceServiceDenseTextEmbeddingsModel) model;
|
||||
var actionCreator = new ElasticInferenceServiceActionCreator(getSender(), getServiceComponents(), getCurrentTraceInfo());
|
||||
|
||||
List<EmbeddingRequestChunker.BatchRequestAndListener> batchedRequests = new EmbeddingRequestChunker<>(
|
||||
inputs.getInputs(),
|
||||
DENSE_TEXT_EMBEDDINGS_MAX_BATCH_SIZE,
|
||||
elasticInferenceServiceModel.getConfigurations().getChunkingSettings()
|
||||
).batchRequestsWithListeners(listener);
|
||||
|
||||
for (var request : batchedRequests) {
|
||||
var action = elasticInferenceServiceModel.accept(actionCreator, taskSettings);
|
||||
action.execute(EmbeddingsInput.fromStrings(request.batch().inputs().get(), inputType), timeout, request.listener());
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -294,11 +356,19 @@ public class ElasticInferenceService extends SenderService {
|
|||
Map<String, Object> serviceSettingsMap = removeFromMapOrThrowIfNull(config, ModelConfigurations.SERVICE_SETTINGS);
|
||||
Map<String, Object> taskSettingsMap = removeFromMapOrDefaultEmpty(config, ModelConfigurations.TASK_SETTINGS);
|
||||
|
||||
ChunkingSettings chunkingSettings = null;
|
||||
if (TaskType.TEXT_EMBEDDING.equals(taskType)) {
|
||||
chunkingSettings = ChunkingSettingsBuilder.fromMap(
|
||||
removeFromMapOrDefaultEmpty(config, ModelConfigurations.CHUNKING_SETTINGS)
|
||||
);
|
||||
}
|
||||
|
||||
ElasticInferenceServiceModel model = createModel(
|
||||
inferenceEntityId,
|
||||
taskType,
|
||||
serviceSettingsMap,
|
||||
taskSettingsMap,
|
||||
chunkingSettings,
|
||||
serviceSettingsMap,
|
||||
elasticInferenceServiceComponents,
|
||||
TaskType.unsupportedTaskTypeErrorMsg(taskType, NAME),
|
||||
|
@ -335,6 +405,7 @@ public class ElasticInferenceService extends SenderService {
|
|||
TaskType taskType,
|
||||
Map<String, Object> serviceSettings,
|
||||
Map<String, Object> taskSettings,
|
||||
ChunkingSettings chunkingSettings,
|
||||
@Nullable Map<String, Object> secretSettings,
|
||||
ElasticInferenceServiceComponents eisServiceComponents,
|
||||
String failureMessage,
|
||||
|
@ -361,6 +432,16 @@ public class ElasticInferenceService extends SenderService {
|
|||
eisServiceComponents,
|
||||
context
|
||||
);
|
||||
case TEXT_EMBEDDING -> new ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
inferenceEntityId,
|
||||
taskType,
|
||||
NAME,
|
||||
serviceSettings,
|
||||
taskSettings,
|
||||
secretSettings,
|
||||
eisServiceComponents,
|
||||
context
|
||||
);
|
||||
default -> throw new ElasticsearchStatusException(failureMessage, RestStatus.BAD_REQUEST);
|
||||
};
|
||||
}
|
||||
|
@ -376,11 +457,17 @@ public class ElasticInferenceService extends SenderService {
|
|||
Map<String, Object> taskSettingsMap = removeFromMapOrDefaultEmpty(config, ModelConfigurations.TASK_SETTINGS);
|
||||
Map<String, Object> secretSettingsMap = removeFromMapOrDefaultEmpty(secrets, ModelSecrets.SECRET_SETTINGS);
|
||||
|
||||
ChunkingSettings chunkingSettings = null;
|
||||
if (TaskType.TEXT_EMBEDDING.equals(taskType)) {
|
||||
chunkingSettings = ChunkingSettingsBuilder.fromMap(removeFromMap(config, ModelConfigurations.CHUNKING_SETTINGS));
|
||||
}
|
||||
|
||||
return createModelFromPersistent(
|
||||
inferenceEntityId,
|
||||
taskType,
|
||||
serviceSettingsMap,
|
||||
taskSettingsMap,
|
||||
chunkingSettings,
|
||||
secretSettingsMap,
|
||||
parsePersistedConfigErrorMsg(inferenceEntityId, NAME)
|
||||
);
|
||||
|
@ -391,11 +478,17 @@ public class ElasticInferenceService extends SenderService {
|
|||
Map<String, Object> serviceSettingsMap = removeFromMapOrThrowIfNull(config, ModelConfigurations.SERVICE_SETTINGS);
|
||||
Map<String, Object> taskSettingsMap = removeFromMapOrDefaultEmpty(config, ModelConfigurations.TASK_SETTINGS);
|
||||
|
||||
ChunkingSettings chunkingSettings = null;
|
||||
if (TaskType.TEXT_EMBEDDING.equals(taskType)) {
|
||||
chunkingSettings = ChunkingSettingsBuilder.fromMap(removeFromMap(config, ModelConfigurations.CHUNKING_SETTINGS));
|
||||
}
|
||||
|
||||
return createModelFromPersistent(
|
||||
inferenceEntityId,
|
||||
taskType,
|
||||
serviceSettingsMap,
|
||||
taskSettingsMap,
|
||||
chunkingSettings,
|
||||
null,
|
||||
parsePersistedConfigErrorMsg(inferenceEntityId, NAME)
|
||||
);
|
||||
|
@ -411,6 +504,7 @@ public class ElasticInferenceService extends SenderService {
|
|||
TaskType taskType,
|
||||
Map<String, Object> serviceSettings,
|
||||
Map<String, Object> taskSettings,
|
||||
ChunkingSettings chunkingSettings,
|
||||
@Nullable Map<String, Object> secretSettings,
|
||||
String failureMessage
|
||||
) {
|
||||
|
@ -419,6 +513,7 @@ public class ElasticInferenceService extends SenderService {
|
|||
taskType,
|
||||
serviceSettings,
|
||||
taskSettings,
|
||||
chunkingSettings,
|
||||
secretSettings,
|
||||
elasticInferenceServiceComponents,
|
||||
failureMessage,
|
||||
|
@ -432,6 +527,36 @@ public class ElasticInferenceService extends SenderService {
|
|||
ModelValidatorBuilder.buildModelValidator(model.getTaskType()).validate(this, model, listener);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Model updateModelWithEmbeddingDetails(Model model, int embeddingSize) {
|
||||
if (model instanceof ElasticInferenceServiceDenseTextEmbeddingsModel embeddingsModel) {
|
||||
var serviceSettings = embeddingsModel.getServiceSettings();
|
||||
var modelId = serviceSettings.modelId();
|
||||
var similarityFromModel = serviceSettings.similarity();
|
||||
var similarityToUse = similarityFromModel == null ? defaultDenseTextEmbeddingsSimilarity() : similarityFromModel;
|
||||
var maxInputTokens = serviceSettings.maxInputTokens();
|
||||
var dimensionsSetByUser = serviceSettings.dimensionsSetByUser();
|
||||
|
||||
var updateServiceSettings = new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
modelId,
|
||||
similarityToUse,
|
||||
embeddingSize,
|
||||
maxInputTokens,
|
||||
dimensionsSetByUser,
|
||||
serviceSettings.rateLimitSettings()
|
||||
);
|
||||
|
||||
return new ElasticInferenceServiceDenseTextEmbeddingsModel(embeddingsModel, updateServiceSettings);
|
||||
} else {
|
||||
throw ServiceUtils.invalidModelTypeForUpdateModelWithEmbeddingDetails(model.getClass());
|
||||
}
|
||||
}
|
||||
|
||||
public static SimilarityMeasure defaultDenseTextEmbeddingsSimilarity() {
|
||||
// TODO: double-check
|
||||
return SimilarityMeasure.COSINE;
|
||||
}
|
||||
|
||||
private static List<ChunkedInference> translateToChunkedResults(InferenceInputs inputs, InferenceServiceResults inferenceResults) {
|
||||
if (inferenceResults instanceof SparseEmbeddingResults sparseEmbeddingResults) {
|
||||
var inputsAsList = EmbeddingsInput.of(inputs).getStringInputs();
|
||||
|
@ -469,9 +594,9 @@ public class ElasticInferenceService extends SenderService {
|
|||
|
||||
configurationMap.put(
|
||||
MODEL_ID,
|
||||
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION)).setDescription(
|
||||
"The name of the model to use for the inference task."
|
||||
)
|
||||
new SettingsConfiguration.Builder(
|
||||
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.TEXT_EMBEDDING)
|
||||
).setDescription("The name of the model to use for the inference task.")
|
||||
.setLabel("Model ID")
|
||||
.setRequired(true)
|
||||
.setSensitive(false)
|
||||
|
@ -482,7 +607,7 @@ public class ElasticInferenceService extends SenderService {
|
|||
|
||||
configurationMap.put(
|
||||
MAX_INPUT_TOKENS,
|
||||
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING)).setDescription(
|
||||
new SettingsConfiguration.Builder(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.TEXT_EMBEDDING)).setDescription(
|
||||
"Allows you to specify the maximum number of tokens per input."
|
||||
)
|
||||
.setLabel("Maximum Input Tokens")
|
||||
|
@ -494,7 +619,9 @@ public class ElasticInferenceService extends SenderService {
|
|||
);
|
||||
|
||||
configurationMap.putAll(
|
||||
RateLimitSettings.toSettingsConfiguration(EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION))
|
||||
RateLimitSettings.toSettingsConfiguration(
|
||||
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.TEXT_EMBEDDING)
|
||||
)
|
||||
);
|
||||
|
||||
return new InferenceServiceConfiguration.Builder().setService(NAME)
|
||||
|
|
|
@ -7,14 +7,15 @@
|
|||
|
||||
package org.elasticsearch.xpack.inference.services.elastic;
|
||||
|
||||
import org.elasticsearch.inference.Model;
|
||||
import org.elasticsearch.inference.ModelConfigurations;
|
||||
import org.elasticsearch.inference.ModelSecrets;
|
||||
import org.elasticsearch.inference.ServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.RateLimitGroupingModel;
|
||||
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
public abstract class ElasticInferenceServiceModel extends Model {
|
||||
public abstract class ElasticInferenceServiceModel extends RateLimitGroupingModel {
|
||||
|
||||
private final ElasticInferenceServiceRateLimitServiceSettings rateLimitServiceSettings;
|
||||
|
||||
|
@ -35,12 +36,18 @@ public abstract class ElasticInferenceServiceModel extends Model {
|
|||
public ElasticInferenceServiceModel(ElasticInferenceServiceModel model, ServiceSettings serviceSettings) {
|
||||
super(model, serviceSettings);
|
||||
|
||||
this.rateLimitServiceSettings = model.rateLimitServiceSettings();
|
||||
this.rateLimitServiceSettings = model.rateLimitServiceSettings;
|
||||
this.elasticInferenceServiceComponents = model.elasticInferenceServiceComponents();
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceRateLimitServiceSettings rateLimitServiceSettings() {
|
||||
return rateLimitServiceSettings;
|
||||
@Override
|
||||
public int rateLimitGroupingHash() {
|
||||
// We only have one model for rerank
|
||||
return Objects.hash(this.getServiceSettings().modelId());
|
||||
}
|
||||
|
||||
public RateLimitSettings rateLimitSettings() {
|
||||
return rateLimitServiceSettings.rateLimitSettings();
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceComponents elasticInferenceServiceComponents() {
|
||||
|
|
|
@ -20,7 +20,7 @@ public abstract class ElasticInferenceServiceRequestManager extends BaseRequestM
|
|||
private final ElasticInferenceServiceRequestMetadata requestMetadata;
|
||||
|
||||
protected ElasticInferenceServiceRequestManager(ThreadPool threadPool, ElasticInferenceServiceModel model) {
|
||||
super(threadPool, model.getInferenceEntityId(), RateLimitGrouping.of(model), model.rateLimitServiceSettings().rateLimitSettings());
|
||||
super(threadPool, model.getInferenceEntityId(), RateLimitGrouping.of(model), model.rateLimitSettings());
|
||||
this.requestMetadata = extractRequestMetadataFromThreadContext(threadPool.getThreadContext());
|
||||
}
|
||||
|
||||
|
@ -32,7 +32,7 @@ public abstract class ElasticInferenceServiceRequestManager extends BaseRequestM
|
|||
public static RateLimitGrouping of(ElasticInferenceServiceModel model) {
|
||||
Objects.requireNonNull(model);
|
||||
|
||||
return new RateLimitGrouping(model.rateLimitServiceSettings().modelId().hashCode());
|
||||
return new RateLimitGrouping(model.rateLimitGroupingHash());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -9,9 +9,16 @@ package org.elasticsearch.xpack.inference.services.elastic.action;
|
|||
|
||||
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
|
||||
import org.elasticsearch.xpack.inference.external.action.SenderExecutableAction;
|
||||
import org.elasticsearch.xpack.inference.external.http.retry.ResponseHandler;
|
||||
import org.elasticsearch.xpack.inference.external.http.sender.EmbeddingsInput;
|
||||
import org.elasticsearch.xpack.inference.external.http.sender.GenericRequestManager;
|
||||
import org.elasticsearch.xpack.inference.external.http.sender.Sender;
|
||||
import org.elasticsearch.xpack.inference.external.request.elastic.ElasticInferenceServiceDenseTextEmbeddingsRequest;
|
||||
import org.elasticsearch.xpack.inference.external.response.elastic.ElasticInferenceServiceDenseTextEmbeddingsResponseEntity;
|
||||
import org.elasticsearch.xpack.inference.services.ServiceComponents;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceResponseHandler;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceSparseEmbeddingsRequestManager;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.telemetry.TraceContext;
|
||||
|
||||
|
@ -19,10 +26,16 @@ import java.util.Locale;
|
|||
import java.util.Objects;
|
||||
|
||||
import static org.elasticsearch.xpack.inference.external.action.ActionUtils.constructFailedToSendRequestMessage;
|
||||
import static org.elasticsearch.xpack.inference.external.request.elastic.ElasticInferenceServiceRequest.extractRequestMetadataFromThreadContext;
|
||||
import static org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceService.ELASTIC_INFERENCE_SERVICE_IDENTIFIER;
|
||||
|
||||
public class ElasticInferenceServiceActionCreator implements ElasticInferenceServiceActionVisitor {
|
||||
|
||||
public static final ResponseHandler DENSE_TEXT_EMBEDDINGS_HANDLER = new ElasticInferenceServiceResponseHandler(
|
||||
"elastic dense text embedding",
|
||||
ElasticInferenceServiceDenseTextEmbeddingsResponseEntity::fromResponse
|
||||
);
|
||||
|
||||
private final Sender sender;
|
||||
|
||||
private final ServiceComponents serviceComponents;
|
||||
|
@ -43,4 +56,26 @@ public class ElasticInferenceServiceActionCreator implements ElasticInferenceSer
|
|||
);
|
||||
return new SenderExecutableAction(sender, requestManager, errorMessage);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ExecutableAction create(ElasticInferenceServiceDenseTextEmbeddingsModel model) {
|
||||
var threadPool = serviceComponents.threadPool();
|
||||
|
||||
var manager = new GenericRequestManager<>(
|
||||
threadPool,
|
||||
model,
|
||||
DENSE_TEXT_EMBEDDINGS_HANDLER,
|
||||
(embeddingsInput) -> new ElasticInferenceServiceDenseTextEmbeddingsRequest(
|
||||
model,
|
||||
embeddingsInput.getStringInputs(),
|
||||
traceContext,
|
||||
extractRequestMetadataFromThreadContext(threadPool.getThreadContext()),
|
||||
embeddingsInput.getInputType()
|
||||
),
|
||||
EmbeddingsInput.class
|
||||
);
|
||||
|
||||
var failedToSendRequestErrorMessage = constructFailedToSendRequestMessage("Elastic dense text embeddings");
|
||||
return new SenderExecutableAction(sender, manager, failedToSendRequestErrorMessage);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -8,10 +8,12 @@
|
|||
package org.elasticsearch.xpack.inference.services.elastic.action;
|
||||
|
||||
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
|
||||
|
||||
public interface ElasticInferenceServiceActionVisitor {
|
||||
|
||||
ExecutableAction create(ElasticInferenceServiceSparseEmbeddingsModel model);
|
||||
|
||||
ExecutableAction create(ElasticInferenceServiceDenseTextEmbeddingsModel model);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
|
||||
|
||||
import org.elasticsearch.ElasticsearchStatusException;
|
||||
import org.elasticsearch.core.Nullable;
|
||||
import org.elasticsearch.inference.EmptySecretSettings;
|
||||
import org.elasticsearch.inference.EmptyTaskSettings;
|
||||
import org.elasticsearch.inference.ModelConfigurations;
|
||||
import org.elasticsearch.inference.ModelSecrets;
|
||||
import org.elasticsearch.inference.SecretSettings;
|
||||
import org.elasticsearch.inference.TaskSettings;
|
||||
import org.elasticsearch.inference.TaskType;
|
||||
import org.elasticsearch.rest.RestStatus;
|
||||
import org.elasticsearch.xpack.inference.external.action.ExecutableAction;
|
||||
import org.elasticsearch.xpack.inference.services.ConfigurationParseContext;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceComponents;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceExecutableActionModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.action.ElasticInferenceServiceActionVisitor;
|
||||
|
||||
import java.net.URI;
|
||||
import java.net.URISyntaxException;
|
||||
import java.util.Map;
|
||||
|
||||
public class ElasticInferenceServiceDenseTextEmbeddingsModel extends ElasticInferenceServiceExecutableActionModel {
|
||||
|
||||
private final URI uri;
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
String inferenceEntityId,
|
||||
TaskType taskType,
|
||||
String service,
|
||||
Map<String, Object> serviceSettings,
|
||||
Map<String, Object> taskSettings,
|
||||
Map<String, Object> secrets,
|
||||
ElasticInferenceServiceComponents elasticInferenceServiceComponents,
|
||||
ConfigurationParseContext context
|
||||
) {
|
||||
this(
|
||||
inferenceEntityId,
|
||||
taskType,
|
||||
service,
|
||||
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings.fromMap(serviceSettings, context),
|
||||
// TODO: we probably want dense embeddings task settings
|
||||
EmptyTaskSettings.INSTANCE,
|
||||
EmptySecretSettings.INSTANCE,
|
||||
elasticInferenceServiceComponents
|
||||
);
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
String inferenceEntityId,
|
||||
TaskType taskType,
|
||||
String service,
|
||||
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings serviceSettings,
|
||||
// TODO: we probably want dense embeddings task settings
|
||||
@Nullable TaskSettings taskSettings,
|
||||
@Nullable SecretSettings secretSettings,
|
||||
ElasticInferenceServiceComponents elasticInferenceServiceComponents
|
||||
) {
|
||||
super(
|
||||
new ModelConfigurations(inferenceEntityId, taskType, service, serviceSettings, taskSettings),
|
||||
new ModelSecrets(secretSettings),
|
||||
serviceSettings,
|
||||
elasticInferenceServiceComponents
|
||||
);
|
||||
this.uri = createUri();
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
ElasticInferenceServiceDenseTextEmbeddingsModel model,
|
||||
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings serviceSettings
|
||||
) {
|
||||
super(model, serviceSettings);
|
||||
this.uri = createUri();
|
||||
}
|
||||
|
||||
@Override
|
||||
public ExecutableAction accept(ElasticInferenceServiceActionVisitor visitor, Map<String, Object> taskSettings) {
|
||||
return visitor.create(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings getServiceSettings() {
|
||||
return (ElasticInferenceServiceDenseTextEmbeddingsServiceSettings) super.getServiceSettings();
|
||||
}
|
||||
|
||||
public URI uri() {
|
||||
return uri;
|
||||
}
|
||||
|
||||
private URI createUri() throws ElasticsearchStatusException {
|
||||
try {
|
||||
// TODO, consider transforming the base URL into a URI for better error handling.
|
||||
return new URI(elasticInferenceServiceComponents().elasticInferenceServiceUrl() + "/api/v1/embed/text/dense");
|
||||
} catch (URISyntaxException e) {
|
||||
throw new ElasticsearchStatusException(
|
||||
"Failed to create URI for service ["
|
||||
+ this.getConfigurations().getService()
|
||||
+ "] with taskType ["
|
||||
+ this.getTaskType()
|
||||
+ "]: "
|
||||
+ e.getMessage(),
|
||||
RestStatus.BAD_REQUEST,
|
||||
e
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,263 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
|
||||
|
||||
import org.elasticsearch.TransportVersion;
|
||||
import org.elasticsearch.TransportVersions;
|
||||
import org.elasticsearch.common.ValidationException;
|
||||
import org.elasticsearch.common.io.stream.StreamInput;
|
||||
import org.elasticsearch.common.io.stream.StreamOutput;
|
||||
import org.elasticsearch.core.Nullable;
|
||||
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
|
||||
import org.elasticsearch.inference.ModelConfigurations;
|
||||
import org.elasticsearch.inference.ServiceSettings;
|
||||
import org.elasticsearch.inference.SimilarityMeasure;
|
||||
import org.elasticsearch.xcontent.XContentBuilder;
|
||||
import org.elasticsearch.xpack.inference.services.ConfigurationParseContext;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceService;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceRateLimitServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.settings.FilteredXContentObject;
|
||||
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceFields.*;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.extractRequiredString;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.extractSimilarity;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceUtils.removeAsType;
|
||||
|
||||
public class ElasticInferenceServiceDenseTextEmbeddingsServiceSettings extends FilteredXContentObject
|
||||
implements
|
||||
ServiceSettings,
|
||||
ElasticInferenceServiceRateLimitServiceSettings {
|
||||
|
||||
public static final String NAME = "elastic_inference_service_dense_embeddings_service_settings";
|
||||
static final String DIMENSIONS_SET_BY_USER = "dimensions_set_by_user";
|
||||
|
||||
public static final RateLimitSettings DEFAULT_RATE_LIMIT_SETTINGS = new RateLimitSettings(10_000);
|
||||
|
||||
private final String modelId;
|
||||
private final SimilarityMeasure similarity;
|
||||
private final Integer dimensions;
|
||||
private final Integer maxInputTokens;
|
||||
private final boolean dimensionsSetByUser;
|
||||
private final RateLimitSettings rateLimitSettings;
|
||||
|
||||
public static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromMap(
|
||||
Map<String, Object> map,
|
||||
ConfigurationParseContext context
|
||||
) {
|
||||
return switch (context) {
|
||||
case REQUEST -> fromRequestMap(map, context);
|
||||
case PERSISTENT -> fromPersistentMap(map, context);
|
||||
};
|
||||
}
|
||||
|
||||
private static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromRequestMap(
|
||||
Map<String, Object> map,
|
||||
ConfigurationParseContext context
|
||||
) {
|
||||
ValidationException validationException = new ValidationException();
|
||||
|
||||
String modelId = extractRequiredString(map, MODEL_ID, ModelConfigurations.SERVICE_SETTINGS, validationException);
|
||||
RateLimitSettings rateLimitSettings = RateLimitSettings.of(
|
||||
map,
|
||||
DEFAULT_RATE_LIMIT_SETTINGS,
|
||||
validationException,
|
||||
ElasticInferenceService.NAME,
|
||||
context
|
||||
);
|
||||
|
||||
SimilarityMeasure similarity = extractSimilarity(map, ModelConfigurations.SERVICE_SETTINGS, validationException);
|
||||
Integer dims = removeAsType(map, DIMENSIONS, Integer.class);
|
||||
Integer maxInputTokens = removeAsType(map, MAX_INPUT_TOKENS, Integer.class);
|
||||
|
||||
if (validationException.validationErrors().isEmpty() == false) {
|
||||
throw validationException;
|
||||
}
|
||||
|
||||
var dimensionsSetByUser = dims != null;
|
||||
|
||||
return new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
modelId,
|
||||
similarity,
|
||||
dims,
|
||||
maxInputTokens,
|
||||
dimensionsSetByUser,
|
||||
rateLimitSettings
|
||||
);
|
||||
}
|
||||
|
||||
private static ElasticInferenceServiceDenseTextEmbeddingsServiceSettings fromPersistentMap(
|
||||
Map<String, Object> map,
|
||||
ConfigurationParseContext context
|
||||
) {
|
||||
ValidationException validationException = new ValidationException();
|
||||
|
||||
String modelId = extractRequiredString(map, MODEL_ID, ModelConfigurations.SERVICE_SETTINGS, validationException);
|
||||
RateLimitSettings rateLimitSettings = RateLimitSettings.of(
|
||||
map,
|
||||
DEFAULT_RATE_LIMIT_SETTINGS,
|
||||
validationException,
|
||||
ElasticInferenceService.NAME,
|
||||
context
|
||||
);
|
||||
|
||||
SimilarityMeasure similarity = extractSimilarity(map, ModelConfigurations.SERVICE_SETTINGS, validationException);
|
||||
Integer dims = removeAsType(map, DIMENSIONS, Integer.class);
|
||||
Integer maxInputTokens = removeAsType(map, MAX_INPUT_TOKENS, Integer.class);
|
||||
Boolean dimensionsSetByUser = removeAsType(map, DIMENSIONS_SET_BY_USER, Boolean.class);
|
||||
|
||||
if (dimensionsSetByUser == null) {
|
||||
dimensionsSetByUser = Boolean.FALSE;
|
||||
}
|
||||
|
||||
if (validationException.validationErrors().isEmpty() == false) {
|
||||
throw validationException;
|
||||
}
|
||||
|
||||
return new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
modelId,
|
||||
similarity,
|
||||
dims,
|
||||
maxInputTokens,
|
||||
dimensionsSetByUser,
|
||||
rateLimitSettings
|
||||
);
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
String modelId,
|
||||
@Nullable SimilarityMeasure similarity,
|
||||
@Nullable Integer dimensions,
|
||||
@Nullable Integer maxInputTokens,
|
||||
boolean dimensionsSetByUser,
|
||||
RateLimitSettings rateLimitSettings
|
||||
) {
|
||||
this.modelId = modelId;
|
||||
this.similarity = similarity;
|
||||
this.dimensions = dimensions;
|
||||
this.maxInputTokens = maxInputTokens;
|
||||
this.dimensionsSetByUser = dimensionsSetByUser;
|
||||
this.rateLimitSettings = rateLimitSettings;
|
||||
}
|
||||
|
||||
public ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(StreamInput in) throws IOException {
|
||||
this.modelId = in.readString();
|
||||
this.similarity = in.readOptionalEnum(SimilarityMeasure.class);
|
||||
this.dimensions = in.readOptionalVInt();
|
||||
this.maxInputTokens = in.readOptionalVInt();
|
||||
this.dimensionsSetByUser = in.readBoolean();
|
||||
this.rateLimitSettings = new RateLimitSettings(in);
|
||||
}
|
||||
|
||||
@Override
|
||||
public SimilarityMeasure similarity() {
|
||||
return similarity;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Integer dimensions() {
|
||||
return dimensions;
|
||||
}
|
||||
|
||||
public Integer maxInputTokens() {
|
||||
return maxInputTokens;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String modelId() {
|
||||
return modelId;
|
||||
}
|
||||
|
||||
@Override
|
||||
public RateLimitSettings rateLimitSettings() {
|
||||
return rateLimitSettings;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Boolean dimensionsSetByUser() {
|
||||
return dimensionsSetByUser;
|
||||
}
|
||||
|
||||
@Override
|
||||
public DenseVectorFieldMapper.ElementType elementType() {
|
||||
return DenseVectorFieldMapper.ElementType.FLOAT;
|
||||
}
|
||||
|
||||
public RateLimitSettings getRateLimitSettings() {
|
||||
return rateLimitSettings;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getWriteableName() {
|
||||
return NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
public XContentBuilder toXContentFragmentOfExposedFields(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.field(MODEL_ID, modelId);
|
||||
rateLimitSettings.toXContent(builder, params);
|
||||
|
||||
return builder;
|
||||
}
|
||||
|
||||
@Override
|
||||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.startObject();
|
||||
|
||||
if (similarity != null) {
|
||||
builder.field(SIMILARITY, similarity);
|
||||
}
|
||||
|
||||
if (dimensions != null) {
|
||||
builder.field(DIMENSIONS, dimensions);
|
||||
}
|
||||
|
||||
if (maxInputTokens != null) {
|
||||
builder.field(MAX_INPUT_TOKENS, maxInputTokens);
|
||||
}
|
||||
|
||||
toXContentFragmentOfExposedFields(builder, params);
|
||||
builder.field(DIMENSIONS_SET_BY_USER, dimensionsSetByUser);
|
||||
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
||||
@Override
|
||||
public TransportVersion getMinimalSupportedVersion() {
|
||||
return TransportVersions.ML_INFERENCE_ELASTIC_DENSE_TEXT_EMBEDDINGS_ADDED;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void writeTo(StreamOutput out) throws IOException {
|
||||
out.writeOptionalEnum(SimilarityMeasure.translateSimilarity(similarity, out.getTransportVersion()));
|
||||
out.writeOptionalVInt(dimensions);
|
||||
out.writeOptionalVInt(maxInputTokens);
|
||||
out.writeBoolean(dimensionsSetByUser);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) return true;
|
||||
if (o == null || getClass() != o.getClass()) return false;
|
||||
ElasticInferenceServiceDenseTextEmbeddingsServiceSettings that = (ElasticInferenceServiceDenseTextEmbeddingsServiceSettings) o;
|
||||
return Objects.equals(dimensionsSetByUser, that.dimensionsSetByUser)
|
||||
&& Objects.equals(similarity, that.similarity)
|
||||
&& Objects.equals(dimensions, that.dimensions)
|
||||
&& Objects.equals(maxInputTokens, that.maxInputTokens);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(similarity, dimensions, maxInputTokens, dimensionsSetByUser);
|
||||
}
|
||||
}
|
|
@ -16,6 +16,7 @@ import org.elasticsearch.common.bytes.BytesReference;
|
|||
import org.elasticsearch.common.settings.Settings;
|
||||
import org.elasticsearch.common.xcontent.XContentHelper;
|
||||
import org.elasticsearch.core.TimeValue;
|
||||
import org.elasticsearch.index.mapper.vectors.DenseVectorFieldMapper;
|
||||
import org.elasticsearch.inference.ChunkInferenceInput;
|
||||
import org.elasticsearch.inference.ChunkedInference;
|
||||
import org.elasticsearch.inference.EmptySecretSettings;
|
||||
|
@ -38,11 +39,9 @@ import org.elasticsearch.xcontent.XContentFactory;
|
|||
import org.elasticsearch.xcontent.XContentType;
|
||||
import org.elasticsearch.xpack.core.inference.action.InferenceAction;
|
||||
import org.elasticsearch.xpack.core.inference.results.ChunkedInferenceEmbedding;
|
||||
import org.elasticsearch.xpack.core.inference.results.EmbeddingResults;
|
||||
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResults;
|
||||
import org.elasticsearch.xpack.core.inference.results.SparseEmbeddingResultsTests;
|
||||
import org.elasticsearch.xpack.core.inference.results.TextEmbeddingFloatResults;
|
||||
import org.elasticsearch.xpack.core.inference.results.UnifiedChatCompletionException;
|
||||
import org.elasticsearch.xpack.core.ml.search.WeightedToken;
|
||||
import org.elasticsearch.xpack.inference.InferencePlugin;
|
||||
import org.elasticsearch.xpack.inference.LocalStateInferencePlugin;
|
||||
import org.elasticsearch.xpack.inference.external.http.HttpClientManager;
|
||||
|
@ -59,6 +58,8 @@ import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticI
|
|||
import org.elasticsearch.xpack.inference.services.elastic.authorization.ElasticInferenceServiceAuthorizationRequestHandler;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.completion.ElasticInferenceServiceCompletionServiceSettings;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.densetextembeddings.ElasticInferenceServiceDenseTextEmbeddingsModelTests;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.sparseembeddings.ElasticInferenceServiceSparseEmbeddingsModel;
|
||||
import org.elasticsearch.xpack.inference.services.elasticsearch.ElserModels;
|
||||
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
|
||||
|
@ -85,6 +86,7 @@ import static org.elasticsearch.xpack.inference.Utils.getPersistedConfigMap;
|
|||
import static org.elasticsearch.xpack.inference.Utils.getRequestConfigMap;
|
||||
import static org.elasticsearch.xpack.inference.Utils.inferenceUtilityPool;
|
||||
import static org.elasticsearch.xpack.inference.Utils.mockClusterServiceEmpty;
|
||||
import static org.elasticsearch.xpack.inference.chunking.ChunkingSettingsTests.createRandomChunkingSettings;
|
||||
import static org.elasticsearch.xpack.inference.external.http.Utils.entityAsMap;
|
||||
import static org.elasticsearch.xpack.inference.external.http.Utils.getUrl;
|
||||
import static org.elasticsearch.xpack.inference.services.ServiceComponentsTests.createWithEmptySettings;
|
||||
|
@ -394,47 +396,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
verifyNoMoreInteractions(sender);
|
||||
}
|
||||
|
||||
public void testInfer_ThrowsErrorWhenTaskTypeIsNotValid() throws IOException {
|
||||
var sender = mock(Sender.class);
|
||||
|
||||
var factory = mock(HttpRequestSender.Factory.class);
|
||||
when(factory.createSender()).thenReturn(sender);
|
||||
|
||||
var mockModel = getInvalidModel("model_id", "service_name", TaskType.TEXT_EMBEDDING);
|
||||
|
||||
try (var service = createService(factory)) {
|
||||
PlainActionFuture<InferenceServiceResults> listener = new PlainActionFuture<>();
|
||||
service.infer(
|
||||
mockModel,
|
||||
null,
|
||||
null,
|
||||
null,
|
||||
List.of(""),
|
||||
false,
|
||||
new HashMap<>(),
|
||||
InputType.INGEST,
|
||||
InferenceAction.Request.DEFAULT_TIMEOUT,
|
||||
listener
|
||||
);
|
||||
|
||||
var thrownException = expectThrows(ElasticsearchStatusException.class, () -> listener.actionGet(TIMEOUT));
|
||||
MatcherAssert.assertThat(
|
||||
thrownException.getMessage(),
|
||||
is(
|
||||
"Inference entity [model_id] does not support task type [text_embedding] "
|
||||
+ "for inference, the task type must be one of [sparse_embedding]."
|
||||
)
|
||||
);
|
||||
|
||||
verify(factory, times(1)).createSender();
|
||||
verify(sender, times(1)).start();
|
||||
}
|
||||
|
||||
verify(sender, times(1)).close();
|
||||
verifyNoMoreInteractions(factory);
|
||||
verifyNoMoreInteractions(sender);
|
||||
}
|
||||
|
||||
public void testInfer_ThrowsErrorWhenTaskTypeIsNotValid_ChatCompletion() throws IOException {
|
||||
var sender = mock(Sender.class);
|
||||
|
||||
|
@ -463,7 +424,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
thrownException.getMessage(),
|
||||
is(
|
||||
"Inference entity [model_id] does not support task type [chat_completion] "
|
||||
+ "for inference, the task type must be one of [sparse_embedding]. "
|
||||
+ "for inference, the task type must be one of [text_embedding, sparse_embedding]. "
|
||||
+ "The task type for the inference entity is chat_completion, "
|
||||
+ "please use the _inference/chat_completion/model_id/_stream URL."
|
||||
)
|
||||
|
@ -604,82 +565,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testChunkedInfer_PropagatesProductUseCaseHeader() throws IOException {
|
||||
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
|
||||
var elasticInferenceServiceURL = getUrl(webServer);
|
||||
|
||||
try (var service = createService(senderFactory, elasticInferenceServiceURL)) {
|
||||
String responseJson = """
|
||||
{
|
||||
"data": [
|
||||
{
|
||||
"hello": 2.1259406,
|
||||
"greet": 1.7073475
|
||||
}
|
||||
]
|
||||
}
|
||||
""";
|
||||
|
||||
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
|
||||
|
||||
// Set up the product use case in the thread context
|
||||
String productUseCase = "test-product-use-case";
|
||||
threadPool.getThreadContext().putHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER, productUseCase);
|
||||
|
||||
var model = ElasticInferenceServiceSparseEmbeddingsModelTests.createModel(elasticInferenceServiceURL, "my-model-id");
|
||||
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
|
||||
|
||||
try {
|
||||
service.chunkedInfer(
|
||||
model,
|
||||
null,
|
||||
List.of(new ChunkInferenceInput("input text")),
|
||||
new HashMap<>(),
|
||||
InputType.INGEST,
|
||||
InferenceAction.Request.DEFAULT_TIMEOUT,
|
||||
listener
|
||||
);
|
||||
|
||||
var results = listener.actionGet(TIMEOUT);
|
||||
|
||||
// Verify the response was processed correctly
|
||||
ChunkedInference inferenceResult = results.getFirst();
|
||||
assertThat(inferenceResult, instanceOf(ChunkedInferenceEmbedding.class));
|
||||
var sparseResult = (ChunkedInferenceEmbedding) inferenceResult;
|
||||
assertThat(
|
||||
sparseResult.chunks(),
|
||||
is(
|
||||
List.of(
|
||||
new EmbeddingResults.Chunk(
|
||||
new SparseEmbeddingResults.Embedding(
|
||||
List.of(new WeightedToken("hello", 2.1259406f), new WeightedToken("greet", 1.7073475f)),
|
||||
false
|
||||
),
|
||||
new ChunkedInference.TextOffset(0, "input text".length())
|
||||
)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
// Verify the request was sent and contains expected headers
|
||||
MatcherAssert.assertThat(webServer.requests(), hasSize(1));
|
||||
var request = webServer.requests().getFirst();
|
||||
assertNull(request.getUri().getQuery());
|
||||
MatcherAssert.assertThat(request.getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
|
||||
|
||||
// Check that the product use case header was set correctly
|
||||
assertThat(request.getHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER), is(productUseCase));
|
||||
|
||||
// Verify request body
|
||||
var requestMap = entityAsMap(request.getBody());
|
||||
assertThat(requestMap, is(Map.of("input", List.of("input text"), "model", "my-model-id", "usage_context", "ingest")));
|
||||
} finally {
|
||||
// Clean up the thread context
|
||||
threadPool.getThreadContext().stashContext();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void testUnifiedCompletionInfer_PropagatesProductUseCaseHeader() throws IOException {
|
||||
var elasticInferenceServiceURL = getUrl(webServer);
|
||||
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
|
||||
|
@ -738,30 +623,45 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testChunkedInfer_PassesThrough() throws IOException {
|
||||
public void testChunkedInfer_PropagatesProductUseCaseHeader() throws IOException {
|
||||
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
|
||||
var elasticInferenceServiceURL = getUrl(webServer);
|
||||
|
||||
try (var service = createService(senderFactory, elasticInferenceServiceURL)) {
|
||||
try (var service = createService(senderFactory, getUrl(webServer))) {
|
||||
|
||||
// Batching will call the service with 2 inputs
|
||||
String responseJson = """
|
||||
{
|
||||
"data": [
|
||||
{
|
||||
"hello": 2.1259406,
|
||||
"greet": 1.7073475
|
||||
}
|
||||
[
|
||||
0.123,
|
||||
-0.456,
|
||||
0.789
|
||||
],
|
||||
[
|
||||
0.987,
|
||||
-0.654,
|
||||
0.321
|
||||
]
|
||||
],
|
||||
"meta": {
|
||||
"usage": {
|
||||
"total_tokens": 10
|
||||
}
|
||||
}
|
||||
}
|
||||
""";
|
||||
|
||||
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
|
||||
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id", null);
|
||||
|
||||
String productUseCase = "test-product-use-case";
|
||||
threadPool.getThreadContext().putHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER, productUseCase);
|
||||
|
||||
var model = ElasticInferenceServiceSparseEmbeddingsModelTests.createModel(elasticInferenceServiceURL, "my-model-id");
|
||||
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
|
||||
// 2 inputs
|
||||
service.chunkedInfer(
|
||||
model,
|
||||
null,
|
||||
List.of(new ChunkInferenceInput("input text")),
|
||||
List.of(new ChunkInferenceInput("hello world"), new ChunkInferenceInput("dense embedding")),
|
||||
new HashMap<>(),
|
||||
InputType.INGEST,
|
||||
InferenceAction.Request.DEFAULT_TIMEOUT,
|
||||
|
@ -769,32 +669,123 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
);
|
||||
|
||||
var results = listener.actionGet(TIMEOUT);
|
||||
assertThat(results.get(0), instanceOf(ChunkedInferenceEmbedding.class));
|
||||
var sparseResult = (ChunkedInferenceEmbedding) results.get(0);
|
||||
assertThat(
|
||||
sparseResult.chunks(),
|
||||
is(
|
||||
List.of(
|
||||
new EmbeddingResults.Chunk(
|
||||
new SparseEmbeddingResults.Embedding(
|
||||
List.of(new WeightedToken("hello", 2.1259406f), new WeightedToken("greet", 1.7073475f)),
|
||||
false
|
||||
),
|
||||
new ChunkedInference.TextOffset(0, "input text".length())
|
||||
)
|
||||
)
|
||||
)
|
||||
assertThat(results, hasSize(2));
|
||||
|
||||
// Verify the response was processed correctly
|
||||
ChunkedInference inferenceResult = results.getFirst();
|
||||
assertThat(inferenceResult, instanceOf(ChunkedInferenceEmbedding.class));
|
||||
|
||||
// Verify the request was sent and contains expected headers
|
||||
assertThat(webServer.requests(), hasSize(1));
|
||||
var request = webServer.requests().getFirst();
|
||||
assertNull(request.getUri().getQuery());
|
||||
assertThat(request.getHeader(HttpHeaders.CONTENT_TYPE), equalTo(XContentType.JSON.mediaType()));
|
||||
|
||||
// Check that the product use case header was set correctly
|
||||
assertThat(request.getHeader(InferencePlugin.X_ELASTIC_PRODUCT_USE_CASE_HTTP_HEADER), is(productUseCase));
|
||||
|
||||
} finally {
|
||||
// Clean up the thread context
|
||||
threadPool.getThreadContext().stashContext();
|
||||
}
|
||||
}
|
||||
|
||||
public void testChunkedInfer_BatchesCallsChunkingSettingsSet() throws IOException {
|
||||
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(
|
||||
getUrl(webServer),
|
||||
"my-dense-model-id",
|
||||
createRandomChunkingSettings()
|
||||
);
|
||||
|
||||
testChunkedInfer_BatchesCalls(model);
|
||||
}
|
||||
|
||||
public void testChunkedInfer_ChunkingSettingsNotSet() throws IOException {
|
||||
var model = ElasticInferenceServiceDenseTextEmbeddingsModelTests.createModel(getUrl(webServer), "my-dense-model-id", null);
|
||||
|
||||
testChunkedInfer_BatchesCalls(model);
|
||||
}
|
||||
|
||||
private void testChunkedInfer_BatchesCalls(ElasticInferenceServiceDenseTextEmbeddingsModel model) throws IOException {
|
||||
var senderFactory = HttpRequestSenderTests.createSenderFactory(threadPool, clientManager);
|
||||
|
||||
try (var service = createService(senderFactory, getUrl(webServer))) {
|
||||
|
||||
// Batching will call the service with 2 inputs
|
||||
String responseJson = """
|
||||
{
|
||||
"data": [
|
||||
[
|
||||
0.123,
|
||||
-0.456,
|
||||
0.789
|
||||
],
|
||||
[
|
||||
0.987,
|
||||
-0.654,
|
||||
0.321
|
||||
]
|
||||
],
|
||||
"meta": {
|
||||
"usage": {
|
||||
"total_tokens": 10
|
||||
}
|
||||
}
|
||||
}
|
||||
""";
|
||||
webServer.enqueue(new MockResponse().setResponseCode(200).setBody(responseJson));
|
||||
|
||||
PlainActionFuture<List<ChunkedInference>> listener = new PlainActionFuture<>();
|
||||
// 2 inputs
|
||||
service.chunkedInfer(
|
||||
model,
|
||||
null,
|
||||
List.of(new ChunkInferenceInput("hello world"), new ChunkInferenceInput("dense embedding")),
|
||||
new HashMap<>(),
|
||||
InputType.INGEST,
|
||||
InferenceAction.Request.DEFAULT_TIMEOUT,
|
||||
listener
|
||||
);
|
||||
|
||||
var results = listener.actionGet(TIMEOUT);
|
||||
assertThat(results, hasSize(2));
|
||||
|
||||
// First result
|
||||
{
|
||||
assertThat(results.getFirst(), instanceOf(ChunkedInferenceEmbedding.class));
|
||||
var denseResult = (ChunkedInferenceEmbedding) results.getFirst();
|
||||
assertThat(denseResult.chunks(), hasSize(1));
|
||||
assertEquals(new ChunkedInference.TextOffset(0, "hello world".length()), denseResult.chunks().getFirst().offset());
|
||||
assertThat(denseResult.chunks().get(0).embedding(), instanceOf(TextEmbeddingFloatResults.Embedding.class));
|
||||
|
||||
var embedding = (TextEmbeddingFloatResults.Embedding) denseResult.chunks().get(0).embedding();
|
||||
assertArrayEquals(new float[] { 0.123f, -0.456f, 0.789f }, embedding.values(), 0.0f);
|
||||
}
|
||||
|
||||
// Second result
|
||||
{
|
||||
assertThat(results.get(1), instanceOf(ChunkedInferenceEmbedding.class));
|
||||
var denseResult = (ChunkedInferenceEmbedding) results.get(1);
|
||||
assertThat(denseResult.chunks(), hasSize(1));
|
||||
assertEquals(new ChunkedInference.TextOffset(0, "dense embedding".length()), denseResult.chunks().getFirst().offset());
|
||||
assertThat(denseResult.chunks().getFirst().embedding(), instanceOf(TextEmbeddingFloatResults.Embedding.class));
|
||||
|
||||
var embedding = (TextEmbeddingFloatResults.Embedding) denseResult.chunks().get(0).embedding();
|
||||
assertArrayEquals(new float[] { 0.987f, -0.654f, 0.321f }, embedding.values(), 0.0f);
|
||||
}
|
||||
|
||||
MatcherAssert.assertThat(webServer.requests(), hasSize(1));
|
||||
assertNull(webServer.requests().get(0).getUri().getQuery());
|
||||
assertNull(webServer.requests().getFirst().getUri().getQuery());
|
||||
MatcherAssert.assertThat(
|
||||
webServer.requests().get(0).getHeader(HttpHeaders.CONTENT_TYPE),
|
||||
webServer.requests().getFirst().getHeader(HttpHeaders.CONTENT_TYPE),
|
||||
equalTo(XContentType.JSON.mediaType())
|
||||
);
|
||||
|
||||
var requestMap = entityAsMap(webServer.requests().get(0).getBody());
|
||||
assertThat(requestMap, is(Map.of("input", List.of("input text"), "model", "my-model-id", "usage_context", "ingest")));
|
||||
var requestMap = entityAsMap(webServer.requests().getFirst().getBody());
|
||||
MatcherAssert.assertThat(
|
||||
requestMap,
|
||||
is(Map.of("input", List.of("hello world", "dense embedding"), "model", "my-dense-model-id", "usage_context", "ingest"))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -806,27 +797,6 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testHideFromConfigurationApi_ReturnsTrue_WithModelTaskTypesThatAreNotImplemented() throws Exception {
|
||||
try (
|
||||
var service = createServiceWithMockSender(
|
||||
ElasticInferenceServiceAuthorizationModel.of(
|
||||
new ElasticInferenceServiceAuthorizationResponseEntity(
|
||||
List.of(
|
||||
new ElasticInferenceServiceAuthorizationResponseEntity.AuthorizedModel(
|
||||
"model-1",
|
||||
EnumSet.of(TaskType.TEXT_EMBEDDING)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
) {
|
||||
ensureAuthorizationCallFinished(service);
|
||||
|
||||
assertTrue(service.hideFromConfigurationApi());
|
||||
}
|
||||
}
|
||||
|
||||
public void testHideFromConfigurationApi_ReturnsFalse_WithAvailableModels() throws Exception {
|
||||
try (
|
||||
var service = createServiceWithMockSender(
|
||||
|
@ -856,7 +826,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
List.of(
|
||||
new ElasticInferenceServiceAuthorizationResponseEntity.AuthorizedModel(
|
||||
"model-1",
|
||||
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION)
|
||||
EnumSet.of(TaskType.SPARSE_EMBEDDING, TaskType.CHAT_COMPLETION, TaskType.TEXT_EMBEDDING)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
@ -869,7 +839,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
{
|
||||
"service": "elastic",
|
||||
"name": "Elastic",
|
||||
"task_types": ["sparse_embedding", "chat_completion"],
|
||||
"task_types": ["sparse_embedding", "chat_completion", "text_embedding"],
|
||||
"configurations": {
|
||||
"rate_limit.requests_per_minute": {
|
||||
"description": "Minimize the number of rate limit errors.",
|
||||
|
@ -878,7 +848,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding" , "chat_completion"]
|
||||
},
|
||||
"model_id": {
|
||||
"description": "The name of the model to use for the inference task.",
|
||||
|
@ -887,7 +857,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "str",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding" , "chat_completion"]
|
||||
},
|
||||
"max_input_tokens": {
|
||||
"description": "Allows you to specify the maximum number of tokens per input.",
|
||||
|
@ -896,7 +866,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding"]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -933,7 +903,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding" , "chat_completion"]
|
||||
},
|
||||
"model_id": {
|
||||
"description": "The name of the model to use for the inference task.",
|
||||
|
@ -942,7 +912,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "str",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding" , "chat_completion"]
|
||||
},
|
||||
"max_input_tokens": {
|
||||
"description": "Allows you to specify the maximum number of tokens per input.",
|
||||
|
@ -951,7 +921,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding"]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -993,7 +963,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
{
|
||||
"service": "elastic",
|
||||
"name": "Elastic",
|
||||
"task_types": [],
|
||||
"task_types": ["text_embedding"],
|
||||
"configurations": {
|
||||
"rate_limit.requests_per_minute": {
|
||||
"description": "Minimize the number of rate limit errors.",
|
||||
|
@ -1002,7 +972,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding" , "sparse_embedding", "chat_completion"]
|
||||
},
|
||||
"model_id": {
|
||||
"description": "The name of the model to use for the inference task.",
|
||||
|
@ -1011,7 +981,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "str",
|
||||
"supported_task_types": ["sparse_embedding" , "chat_completion"]
|
||||
"supported_task_types": ["text_embedding" , "sparse_embedding", "chat_completion"]
|
||||
},
|
||||
"max_input_tokens": {
|
||||
"description": "Allows you to specify the maximum number of tokens per input.",
|
||||
|
@ -1020,7 +990,7 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
"sensitive": false,
|
||||
"updatable": false,
|
||||
"type": "int",
|
||||
"supported_task_types": ["sparse_embedding"]
|
||||
"supported_task_types": ["text_embedding", "sparse_embedding"]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1197,6 +1167,10 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
{
|
||||
"model_name": "elser-v2",
|
||||
"task_types": ["embed/text/sparse"]
|
||||
},
|
||||
{
|
||||
"model_name": "multilingual-embed",
|
||||
"task_types": ["embed/text/dense"]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@ -1218,6 +1192,16 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
MinimalServiceSettings.sparseEmbedding(ElasticInferenceService.NAME),
|
||||
service
|
||||
),
|
||||
new InferenceService.DefaultConfigId(
|
||||
".multilingual-embed-elastic",
|
||||
MinimalServiceSettings.textEmbedding(
|
||||
ElasticInferenceService.NAME,
|
||||
ElasticInferenceService.DENSE_TEXT_EMBEDDINGS_DIMENSIONS,
|
||||
ElasticInferenceService.defaultDenseTextEmbeddingsSimilarity(),
|
||||
DenseVectorFieldMapper.ElementType.FLOAT
|
||||
),
|
||||
service
|
||||
),
|
||||
new InferenceService.DefaultConfigId(
|
||||
".rainbow-sprinkles-elastic",
|
||||
MinimalServiceSettings.chatCompletion(ElasticInferenceService.NAME),
|
||||
|
@ -1226,14 +1210,18 @@ public class ElasticInferenceServiceTests extends ESSingleNodeTestCase {
|
|||
)
|
||||
)
|
||||
);
|
||||
assertThat(service.supportedTaskTypes(), is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING)));
|
||||
assertThat(
|
||||
service.supportedTaskTypes(),
|
||||
is(EnumSet.of(TaskType.CHAT_COMPLETION, TaskType.SPARSE_EMBEDDING, TaskType.TEXT_EMBEDDING))
|
||||
);
|
||||
|
||||
PlainActionFuture<List<Model>> listener = new PlainActionFuture<>();
|
||||
service.defaultConfigs(listener);
|
||||
var models = listener.actionGet(TIMEOUT);
|
||||
assertThat(models.size(), is(2));
|
||||
assertThat(models.size(), is(3));
|
||||
assertThat(models.get(0).getConfigurations().getInferenceEntityId(), is(".elser-v2-elastic"));
|
||||
assertThat(models.get(1).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
|
||||
assertThat(models.get(1).getConfigurations().getInferenceEntityId(), is(".multilingual-embed-elastic"));
|
||||
assertThat(models.get(2).getConfigurations().getInferenceEntityId(), is(".rainbow-sprinkles-elastic"));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
/*
|
||||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
|
||||
* or more contributor license agreements. Licensed under the Elastic License
|
||||
* 2.0; you may not use this file except in compliance with the Elastic License
|
||||
* 2.0.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.xpack.inference.services.elastic.densetextembeddings;
|
||||
|
||||
import org.elasticsearch.inference.ChunkingSettings;
|
||||
import org.elasticsearch.inference.EmptySecretSettings;
|
||||
import org.elasticsearch.inference.EmptyTaskSettings;
|
||||
import org.elasticsearch.inference.SimilarityMeasure;
|
||||
import org.elasticsearch.inference.TaskType;
|
||||
import org.elasticsearch.xpack.inference.services.elastic.ElasticInferenceServiceComponents;
|
||||
import org.elasticsearch.xpack.inference.services.settings.RateLimitSettings;
|
||||
|
||||
public class ElasticInferenceServiceDenseTextEmbeddingsModelTests {
|
||||
|
||||
public static ElasticInferenceServiceDenseTextEmbeddingsModel createModel(
|
||||
String url,
|
||||
String modelId,
|
||||
ChunkingSettings chunkingSettings
|
||||
) {
|
||||
return new ElasticInferenceServiceDenseTextEmbeddingsModel(
|
||||
"id",
|
||||
TaskType.TEXT_EMBEDDING,
|
||||
"elastic",
|
||||
new ElasticInferenceServiceDenseTextEmbeddingsServiceSettings(
|
||||
modelId,
|
||||
SimilarityMeasure.COSINE,
|
||||
null,
|
||||
null,
|
||||
false,
|
||||
new RateLimitSettings(1000L)
|
||||
),
|
||||
EmptyTaskSettings.INSTANCE,
|
||||
EmptySecretSettings.INSTANCE,
|
||||
ElasticInferenceServiceComponents.of(url)
|
||||
);
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue