Group vector queries into new section (#110722)

This commit is contained in:
Carlos Delgado 2024-07-11 14:45:35 +02:00 committed by GitHub
parent 19cc601bd1
commit f29b92cb07
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 51 additions and 29 deletions

View file

@ -72,14 +72,12 @@ include::query-dsl/match-all-query.asciidoc[]
include::query-dsl/span-queries.asciidoc[]
include::query-dsl/vector-queries.asciidoc[]
include::query-dsl/special-queries.asciidoc[]
include::query-dsl/term-level-queries.asciidoc[]
include::query-dsl/text-expansion-query.asciidoc[]
include::query-dsl/sparse-vector-query.asciidoc[]
include::query-dsl/minimum-should-match.asciidoc[]
include::query-dsl/multi-term-rewrite.asciidoc[]

View file

@ -1,5 +1,5 @@
[[query-dsl-sparse-vector-query]]
== Sparse vector query
=== Sparse vector query
++++
<titleabbrev>Sparse vector</titleabbrev>
@ -19,7 +19,7 @@ For example, a stored vector `{"feature_0": 0.12, "feature_1": 1.2, "feature_2":
[discrete]
[[sparse-vector-query-ex-request]]
=== Example request using an {nlp} model
==== Example request using an {nlp} model
[source,console]
----
@ -37,7 +37,7 @@ GET _search
// TEST[skip: Requires inference]
[discrete]
=== Example request using precomputed vectors
==== Example request using precomputed vectors
[source,console]
----
@ -55,7 +55,7 @@ GET _search
[discrete]
[[sparse-vector-field-params]]
=== Top level parameters for `sparse_vector`
==== Top level parameters for `sparse_vector`
`field`::
(Required, string) The name of the field that contains the token-weight pairs to be searched against.
@ -120,7 +120,7 @@ NOTE: The default values for `tokens_freq_ratio_threshold` and `tokens_weight_th
[discrete]
[[sparse-vector-query-example]]
=== Example ELSER query
==== Example ELSER query
The following is an example of the `sparse_vector` query that references the ELSER model to perform semantic search.
For a more detailed description of how to perform semantic search by using ELSER and the `sparse_vector` query, refer to <<semantic-search-elser,this tutorial>>.
@ -241,7 +241,7 @@ GET my-index/_search
[discrete]
[[sparse-vector-query-with-pruning-config-and-rescore-example]]
=== Example ELSER query with pruning configuration and rescore
==== Example ELSER query with pruning configuration and rescore
The following is an extension to the above example that adds a preview:[] pruning configuration to the `sparse_vector` query.
The pruning configuration identifies non-significant tokens to prune from the query in order to improve query performance.

View file

@ -17,10 +17,6 @@ or collection of documents.
This query finds queries that are stored as documents that match with
the specified document.
<<query-dsl-knn-query,`knn` query>>::
A query that finds the _k_ nearest vectors to a query
vector, as measured by a similarity metric.
<<query-dsl-rank-feature-query,`rank_feature` query>>::
A query that computes scores based on the values of numeric features and is
able to efficiently skip non-competitive hits.
@ -32,9 +28,6 @@ This query allows a script to act as a filter. Also see the
<<query-dsl-script-score-query,`script_score` query>>::
A query that allows to modify the score of a sub-query with a script.
<<query-dsl-semantic-query,`semantic` query>>::
A query that allows you to perform semantic search.
<<query-dsl-wrapper-query,`wrapper` query>>::
A query that accepts other queries as json or yaml string.
@ -50,20 +43,14 @@ include::mlt-query.asciidoc[]
include::percolate-query.asciidoc[]
include::knn-query.asciidoc[]
include::rank-feature-query.asciidoc[]
include::script-query.asciidoc[]
include::script-score-query.asciidoc[]
include::semantic-query.asciidoc[]
include::wrapper-query.asciidoc[]
include::pinned-query.asciidoc[]
include::rule-query.asciidoc[]
include::weighted-tokens-query.asciidoc[]

View file

@ -1,5 +1,5 @@
[[query-dsl-text-expansion-query]]
== Text expansion query
=== Text expansion query
++++
<titleabbrev>Text expansion</titleabbrev>
@ -12,7 +12,7 @@ The text expansion query uses a {nlp} model to convert the query text into a lis
[discrete]
[[text-expansion-query-ex-request]]
=== Example request
==== Example request
[source,console]
----
@ -32,14 +32,14 @@ GET _search
[discrete]
[[text-expansion-query-params]]
=== Top level parameters for `text_expansion`
==== Top level parameters for `text_expansion`
`<sparse_vector_field>`:::
(Required, object) The name of the field that contains the token-weight pairs the NLP model created based on the input text.
[discrete]
[[text-expansion-rank-feature-field-params]]
=== Top level parameters for `<sparse_vector_field>`
==== Top level parameters for `<sparse_vector_field>`
`model_id`::::
(Required, string) The ID of the model to use to convert the query text into token-weight pairs.
@ -84,7 +84,7 @@ NOTE: The default values for `tokens_freq_ratio_threshold` and `tokens_weight_th
[discrete]
[[text-expansion-query-example]]
=== Example ELSER query
==== Example ELSER query
The following is an example of the `text_expansion` query that references the ELSER model to perform semantic search.
For a more detailed description of how to perform semantic search by using ELSER and the `text_expansion` query, refer to <<semantic-search-elser,this tutorial>>.
@ -208,7 +208,7 @@ GET my-index/_search
[discrete]
[[text-expansion-query-with-pruning-config-and-rescore-example]]
=== Example ELSER query with pruning configuration and rescore
==== Example ELSER query with pruning configuration and rescore
The following is an extension to the above example that adds a preview:[] pruning configuration to the `text_expansion` query.
The pruning configuration identifies non-significant tokens to prune from the query in order to improve query performance.

View file

@ -0,0 +1,37 @@
[[vector-queries]]
== Vector queries
Vector queries are specialized queries that work on vector fields to efficiently perform <<semantic-search,semantic search>>.
<<query-dsl-knn-query,`knn` query>>::
A query that finds the _k_ nearest vectors to a query vector for <<dense-vector,`dense_vector`>> fields, as measured by a similarity metric.
<<query-dsl-sparse-vector-query,`sparse_vector` query>>::
A query used to search <<sparse-vector,`sparse_vector`>> field types.
<<query-dsl-semantic-query,`semantic` query>>::
A query that allows you to perform semantic search on <<semantic-text,`semantic_text`>> fields.
[discrete]
=== Deprecated vector queries
The following queries have been deprecated and will be removed in the near future.
Use the <<query-dsl-sparse-vector-query,`sparse_vector` query>> query instead.
<<query-dsl-text-expansion-query,`text_expansion` query>>::
A query that allows you to perform sparse vector search on <<sparse-vector,`sparse_vector`>> or <<rank-features,`rank_features`>> fields.
<<query-dsl-weighted-tokens-query,`weighted_tokens` query>>::
Allows to perform text expansion queries optimizing for performance.
include::knn-query.asciidoc[]
include::sparse-vector-query.asciidoc[]
include::semantic-query.asciidoc[]
include::text-expansion-query.asciidoc[]
include::weighted-tokens-query.asciidoc[]