mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-06-28 09:28:55 -04:00
Group vector queries into new section (#110722)
This commit is contained in:
parent
19cc601bd1
commit
f29b92cb07
5 changed files with 51 additions and 29 deletions
|
@ -72,14 +72,12 @@ include::query-dsl/match-all-query.asciidoc[]
|
|||
|
||||
include::query-dsl/span-queries.asciidoc[]
|
||||
|
||||
include::query-dsl/vector-queries.asciidoc[]
|
||||
|
||||
include::query-dsl/special-queries.asciidoc[]
|
||||
|
||||
include::query-dsl/term-level-queries.asciidoc[]
|
||||
|
||||
include::query-dsl/text-expansion-query.asciidoc[]
|
||||
|
||||
include::query-dsl/sparse-vector-query.asciidoc[]
|
||||
|
||||
include::query-dsl/minimum-should-match.asciidoc[]
|
||||
|
||||
include::query-dsl/multi-term-rewrite.asciidoc[]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
[[query-dsl-sparse-vector-query]]
|
||||
== Sparse vector query
|
||||
=== Sparse vector query
|
||||
|
||||
++++
|
||||
<titleabbrev>Sparse vector</titleabbrev>
|
||||
|
@ -19,7 +19,7 @@ For example, a stored vector `{"feature_0": 0.12, "feature_1": 1.2, "feature_2":
|
|||
|
||||
[discrete]
|
||||
[[sparse-vector-query-ex-request]]
|
||||
=== Example request using an {nlp} model
|
||||
==== Example request using an {nlp} model
|
||||
|
||||
[source,console]
|
||||
----
|
||||
|
@ -37,7 +37,7 @@ GET _search
|
|||
// TEST[skip: Requires inference]
|
||||
|
||||
[discrete]
|
||||
=== Example request using precomputed vectors
|
||||
==== Example request using precomputed vectors
|
||||
|
||||
[source,console]
|
||||
----
|
||||
|
@ -55,7 +55,7 @@ GET _search
|
|||
|
||||
[discrete]
|
||||
[[sparse-vector-field-params]]
|
||||
=== Top level parameters for `sparse_vector`
|
||||
==== Top level parameters for `sparse_vector`
|
||||
|
||||
`field`::
|
||||
(Required, string) The name of the field that contains the token-weight pairs to be searched against.
|
||||
|
@ -120,7 +120,7 @@ NOTE: The default values for `tokens_freq_ratio_threshold` and `tokens_weight_th
|
|||
|
||||
[discrete]
|
||||
[[sparse-vector-query-example]]
|
||||
=== Example ELSER query
|
||||
==== Example ELSER query
|
||||
|
||||
The following is an example of the `sparse_vector` query that references the ELSER model to perform semantic search.
|
||||
For a more detailed description of how to perform semantic search by using ELSER and the `sparse_vector` query, refer to <<semantic-search-elser,this tutorial>>.
|
||||
|
@ -241,7 +241,7 @@ GET my-index/_search
|
|||
|
||||
[discrete]
|
||||
[[sparse-vector-query-with-pruning-config-and-rescore-example]]
|
||||
=== Example ELSER query with pruning configuration and rescore
|
||||
==== Example ELSER query with pruning configuration and rescore
|
||||
|
||||
The following is an extension to the above example that adds a preview:[] pruning configuration to the `sparse_vector` query.
|
||||
The pruning configuration identifies non-significant tokens to prune from the query in order to improve query performance.
|
||||
|
|
|
@ -17,10 +17,6 @@ or collection of documents.
|
|||
This query finds queries that are stored as documents that match with
|
||||
the specified document.
|
||||
|
||||
<<query-dsl-knn-query,`knn` query>>::
|
||||
A query that finds the _k_ nearest vectors to a query
|
||||
vector, as measured by a similarity metric.
|
||||
|
||||
<<query-dsl-rank-feature-query,`rank_feature` query>>::
|
||||
A query that computes scores based on the values of numeric features and is
|
||||
able to efficiently skip non-competitive hits.
|
||||
|
@ -32,9 +28,6 @@ This query allows a script to act as a filter. Also see the
|
|||
<<query-dsl-script-score-query,`script_score` query>>::
|
||||
A query that allows to modify the score of a sub-query with a script.
|
||||
|
||||
<<query-dsl-semantic-query,`semantic` query>>::
|
||||
A query that allows you to perform semantic search.
|
||||
|
||||
<<query-dsl-wrapper-query,`wrapper` query>>::
|
||||
A query that accepts other queries as json or yaml string.
|
||||
|
||||
|
@ -50,20 +43,14 @@ include::mlt-query.asciidoc[]
|
|||
|
||||
include::percolate-query.asciidoc[]
|
||||
|
||||
include::knn-query.asciidoc[]
|
||||
|
||||
include::rank-feature-query.asciidoc[]
|
||||
|
||||
include::script-query.asciidoc[]
|
||||
|
||||
include::script-score-query.asciidoc[]
|
||||
|
||||
include::semantic-query.asciidoc[]
|
||||
|
||||
include::wrapper-query.asciidoc[]
|
||||
|
||||
include::pinned-query.asciidoc[]
|
||||
|
||||
include::rule-query.asciidoc[]
|
||||
|
||||
include::weighted-tokens-query.asciidoc[]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
[[query-dsl-text-expansion-query]]
|
||||
== Text expansion query
|
||||
=== Text expansion query
|
||||
|
||||
++++
|
||||
<titleabbrev>Text expansion</titleabbrev>
|
||||
|
@ -12,7 +12,7 @@ The text expansion query uses a {nlp} model to convert the query text into a lis
|
|||
|
||||
[discrete]
|
||||
[[text-expansion-query-ex-request]]
|
||||
=== Example request
|
||||
==== Example request
|
||||
|
||||
[source,console]
|
||||
----
|
||||
|
@ -32,14 +32,14 @@ GET _search
|
|||
|
||||
[discrete]
|
||||
[[text-expansion-query-params]]
|
||||
=== Top level parameters for `text_expansion`
|
||||
==== Top level parameters for `text_expansion`
|
||||
|
||||
`<sparse_vector_field>`:::
|
||||
(Required, object) The name of the field that contains the token-weight pairs the NLP model created based on the input text.
|
||||
|
||||
[discrete]
|
||||
[[text-expansion-rank-feature-field-params]]
|
||||
=== Top level parameters for `<sparse_vector_field>`
|
||||
==== Top level parameters for `<sparse_vector_field>`
|
||||
|
||||
`model_id`::::
|
||||
(Required, string) The ID of the model to use to convert the query text into token-weight pairs.
|
||||
|
@ -84,7 +84,7 @@ NOTE: The default values for `tokens_freq_ratio_threshold` and `tokens_weight_th
|
|||
|
||||
[discrete]
|
||||
[[text-expansion-query-example]]
|
||||
=== Example ELSER query
|
||||
==== Example ELSER query
|
||||
|
||||
The following is an example of the `text_expansion` query that references the ELSER model to perform semantic search.
|
||||
For a more detailed description of how to perform semantic search by using ELSER and the `text_expansion` query, refer to <<semantic-search-elser,this tutorial>>.
|
||||
|
@ -208,7 +208,7 @@ GET my-index/_search
|
|||
|
||||
[discrete]
|
||||
[[text-expansion-query-with-pruning-config-and-rescore-example]]
|
||||
=== Example ELSER query with pruning configuration and rescore
|
||||
==== Example ELSER query with pruning configuration and rescore
|
||||
|
||||
The following is an extension to the above example that adds a preview:[] pruning configuration to the `text_expansion` query.
|
||||
The pruning configuration identifies non-significant tokens to prune from the query in order to improve query performance.
|
||||
|
|
37
docs/reference/query-dsl/vector-queries.asciidoc
Normal file
37
docs/reference/query-dsl/vector-queries.asciidoc
Normal file
|
@ -0,0 +1,37 @@
|
|||
[[vector-queries]]
|
||||
== Vector queries
|
||||
|
||||
Vector queries are specialized queries that work on vector fields to efficiently perform <<semantic-search,semantic search>>.
|
||||
|
||||
<<query-dsl-knn-query,`knn` query>>::
|
||||
A query that finds the _k_ nearest vectors to a query vector for <<dense-vector,`dense_vector`>> fields, as measured by a similarity metric.
|
||||
|
||||
<<query-dsl-sparse-vector-query,`sparse_vector` query>>::
|
||||
A query used to search <<sparse-vector,`sparse_vector`>> field types.
|
||||
|
||||
<<query-dsl-semantic-query,`semantic` query>>::
|
||||
A query that allows you to perform semantic search on <<semantic-text,`semantic_text`>> fields.
|
||||
|
||||
[discrete]
|
||||
=== Deprecated vector queries
|
||||
|
||||
The following queries have been deprecated and will be removed in the near future.
|
||||
Use the <<query-dsl-sparse-vector-query,`sparse_vector` query>> query instead.
|
||||
|
||||
<<query-dsl-text-expansion-query,`text_expansion` query>>::
|
||||
A query that allows you to perform sparse vector search on <<sparse-vector,`sparse_vector`>> or <<rank-features,`rank_features`>> fields.
|
||||
|
||||
<<query-dsl-weighted-tokens-query,`weighted_tokens` query>>::
|
||||
Allows to perform text expansion queries optimizing for performance.
|
||||
|
||||
include::knn-query.asciidoc[]
|
||||
|
||||
include::sparse-vector-query.asciidoc[]
|
||||
|
||||
include::semantic-query.asciidoc[]
|
||||
|
||||
include::text-expansion-query.asciidoc[]
|
||||
|
||||
include::weighted-tokens-query.asciidoc[]
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue