When exporting and cloning ml configurations in a cluster it can be
frustrating to remove all the fields that were generated by
the plugin. Especially as the number of these fields change
from version to version.
This flag, exclude_generated, allows the GET config APIs to return
configurations with these generated fields removed.
APIs supporting this flag:
- GET _ml/anomaly_detection/<job_id>
- GET _ml/datafeeds/<datafeed_id>
- GET _ml/data_frame/analytics/<analytics_id>
The following fields are not returned in the objects:
- any field that is not user settable (e.g. version, create_time)
- any field that is a calculated default value (e.g. datafeed chunking_config)
- any field that is automatically set via another Elastic stack process (e.g. anomaly job custom_settings.created_by)
relates to #63055
The original comment mentioned issue #48583, but issue #48941
is specifically open for this mute. However, this is
inappropriate, as the underlying reason the test cannot be
unmuted is the same as for all the other tests skipped with the
comment "Kibana sample data": issues #51572, #51576 and #51678.
Closes#48941
This adds the new `for_export` flag to the following APIs:
- GET _ml/anomaly_detection/<job_id>
- GET _ml/datafeeds/<datafeed_id>
- GET _ml/data_frame/analytics/<analytics_id>
The flag is designed for cloning or exporting configuration objects to later be put into the same cluster or a separate cluster.
The following fields are not returned in the objects:
- any field that is not user settable (e.g. version, create_time)
- any field that is a calculated default value (e.g. datafeed chunking_config)
- any field that would effectively require changing to be of use (e.g. datafeed job_id)
- any field that is automatically set via another Elastic stack process (e.g. anomaly job custom_settings.created_by)
closes https://github.com/elastic/elasticsearch/issues/63055
This commit adjusts the following APIs so now they not only support an `_all` case, but wildcard patterned Ids as well.
- `GET _ml/calendars/<calendar_id>/events`
- `GET _ml/calendars/<calendar_id>`
- `GET _ml/anomaly_detectors/<job_id>/model_snapshots/<snapshot_id>`
- `DELETE _ml/anomaly_detectors/<job_id>/_forecast/<forecast_id>`
Previously the "mappings" field of the response from the
find_file_structure endpoint was not a drop-in for the
mappings format of the create index endpoint - the
"properties" layer was missing. The reason for omitting
it initially was that the assumption was that the
find_file_structure endpoint would only ever return very
simple mappings without any nested objects. However,
this will not be true in the future, as we will improve
mappings detection for complex JSON objects. As a first
step it makes sense to move the returned mappings closer
to the standard format.
This is a small building block towards fixing #55616
Changes:
* Moves `Retrieve selected fields` to its own page and adds a title abbreviation.
* Adds existing script and stored fields content to `Retrieve selected fields`
* Adds a xref for `Retrieve selected fields` to `Search your data`
* Adds related redirects and updates existing xrefs
Deleting expired data can take a long time leading to timeouts if there
are many jobs. Often the problem is due to a few large jobs which
prevent the regular maintenance of the remaining jobs. This change adds
a job_id parameter to the delete expired data endpoint to help clean up
those problematic jobs.
This PR adds the initial Java side changes to enable
use of the per-partition categorization functionality
added in elastic/ml-cpp#1293.
There will be a followup change to complete the work,
as there cannot be any end-to-end integration tests
until elastic/ml-cpp#1293 is merged, and also
elastic/ml-cpp#1293 does not implement some of the
more peripheral functionality, like stop_on_warn and
per-partition stats documents.
The changes so far cover REST APIs, results object
formats, HLRC and docs.
This adds a max_model_memory setting to forecast requests.
This setting can take a string value that is formatted according to byte sizes (i.e. "50mb", "150mb").
The default value is `20mb`.
There is a HARD limit at `500mb` which will throw an error if used.
If the limit is larger than 40% the anomaly job's configured model limit, the forecast limit is reduced to be strictly lower than that value. This reduction is logged and audited.
related native change: https://github.com/elastic/ml-cpp/pull/1238
closes: https://github.com/elastic/elasticsearch/issues/56420
Throttling nightly cleanup as much as we do has been over cautious.
Night cleanup should be more lenient in its throttling. We still
keep the same batch size, but now the requests per second scale
with the number of data nodes. If we have more than 5 data nodes,
we don't throttle at all.
Additionally, the API now has `requests_per_second` and `timeout` set.
So users calling the API directly can set the throttling.
This commit also adds a new setting `xpack.ml.nightly_maintenance_requests_per_second`.
This will allow users to adjust throttling of the nightly maintenance.
This PR implements the following changes to make ML model snapshot
retention more flexible in advance of adding a UI for the feature in
an upcoming release.
- The default for `model_snapshot_retention_days` for new jobs is now
10 instead of 1
- There is a new job setting, `daily_model_snapshot_retention_after_days`,
that defaults to 1 for new jobs and `model_snapshot_retention_days`
for pre-7.8 jobs
- For days that are older than `model_snapshot_retention_days`, all
model snapshots are deleted as before
- For days that are in between `daily_model_snapshot_retention_after_days`
and `model_snapshot_retention_days` all but the first model snapshot
for that day are deleted
- The `retain` setting of model snapshots is still respected to allow
selected model snapshots to be retained indefinitely
Closes#52150
The failed_category_count statistic records the number of times
categorization wanted to create a new category but couldn't
because the job had reached its model_memory_limit.
Relates elastic/ml-cpp#1130
The ML info endpoint returns the max_model_memory_limit setting
if one is configured. However, it is still possible to create
a job that cannot run anywhere in the current cluster because
no node in the cluster has enough memory to accommodate it.
This change adds an extra piece of information,
limits.effective_max_model_memory_limit, to the ML info
response that returns the biggest model memory limit that could
be run in the current cluster assuming no other jobs were
running.
The idea is that the ML UI will be able to warn users who try to
create jobs with higher model memory limits that their jobs will
not be able to start unless they add a bigger ML node to their
cluster.
Relates elastic/kibana#63942
Adds a "node" field to the response from the following endpoints:
1. Open anomaly detection job
2. Start datafeed
3. Start data frame analytics job
If the job or datafeed is assigned to a node immediately then
this field will return the ID of that node.
In the case where a job or datafeed is opened or started lazily
the node field will contain an empty string. Clients that want
to test whether a job or datafeed was opened or started lazily
can therefore check for this.
Fixes#54067
Secondary authorization headers are to be used to facilitate Kibana spaces support + ML jobs/datafeeds.
Now on PUT/Update/Preview datafeed, and PUT data frame analytics the secondary authorization is preferred over the primary (if provided).
closes https://github.com/elastic/elasticsearch/issues/53801
This adds two new fields to category definitions.
- `num_matches` indicating how many documents have been seen by this category
- `preferred_to_categories` indicating which other categories this particular category supersedes when messages are categorized.
These fields are only guaranteed to be up to date after a `_flush` or `_close`
native change: https://github.com/elastic/ml-cpp/pull/1062
This is a simple naming change PR, to fix the fact that "metadata" is a
single English word, and for too long we have not followed general
naming conventions for it. We are also not consistent about it, for
example, METADATA instead of META_DATA if we were trying to be
consistent with MetaData (although METADATA is correct when considered
in the context of "metadata"). This was a simple find and replace across
the code base, only taking a few minutes to fix this naming issue
forever.