Commit graph

23 commits

Author SHA1 Message Date
James Rodewig
5c75d004fa
[DOCS] Replace put with create or update in API names (#70330)
Co-authored-by: debadair <debadair@elastic.co>
Co-authored-by: Lisa Cawley <lcawley@elastic.co>
Co-authored-by: Elastic Machine <elasticmachine@users.noreply.github.com>
2021-03-15 14:49:44 -04:00
Dimitris Athanasiou
7fb98c0d3c
[ML] Add runtime mappings to data frame analytics source config (#69183)
Users can now specify runtime mappings as part of the source config
of a data frame analytics job. Those runtime mappings become part of
the mapping of the destination index. This ensures the fields are
accessible in the destination index even if the relevant data frame
analytics job gets deleted.

Closes #65056
2021-02-19 16:29:19 +02:00
Valeriy Khakhutskyy
78368428b3
[ML] Add early stopping DFA configuration parameter (#68099)
The PR adds early_stopping_enabled optional data frame analysis configuration parameter. The enhancement was already described in elastic/ml-cpp#1676 and so I mark it here as non-issue.
2021-02-01 11:41:28 +01:00
Dimitris Athanasiou
5c961c1c81
[ML] Expand regression/classification hyperparameters (#67950)
Expands data frame analytics regression and classification
analyses with the followin hyperparameters:

- alpha
- downsample_factor
- eta_growth_rate_per_tree
- max_optimization_rounds_per_hyperparameter
- soft_tree_depth_limit
- soft_tree_depth_tolerance
2021-01-26 12:56:41 +02:00
István Zoltán Szabó
6093518f4a
[DOCS] Changes experimental flag to beta in DFA related docs (#63992) 2020-10-26 17:02:46 +01:00
Przemysław Witek
d9e7d88f08
[ML] Allow setting num_top_classes to a special value -1 (#63587) 2020-10-13 13:14:17 +02:00
Lisa Cawley
b325772498
[DOCS] Add experimental tag to data frame analytics APIs (#63153) 2020-10-02 09:42:57 -07:00
Benjamin Trent
1b34c88d56
[ML] adding docs + hlrc for data frame analysis feature_processors (#61149)
Adds HLRC and some docs for the new feature_processors field in Data frame analytics.

Co-authored-by: Przemysław Witek <przemyslaw.witek@elastic.co>
Co-authored-by: Lisa Cawley <lcawley@elastic.co>
2020-08-24 12:00:44 -04:00
Dimitris Athanasiou
da0249f6c2
[ML] Data frame analytics max_num_threads setting (#59254)
This adds a setting to data frame analytics jobs called
`max_number_threads`. The setting expects a positive integer.
When used the user specifies the max number of threads that may
be used by the analysis. Note that the actual number of threads
used is limited by the number of processors on the node where
the job is assigned. Also, the process may use a couple more threads
for operational functionality that is not the analysis itself.

This setting may also be updated for a stopped job.

More threads may reduce the time it takes to complete the job at the cost
of using more CPU.
2020-07-09 16:31:26 +03:00
Dimitris Athanasiou
6bf3834059
[ML] Add loss_function to regression (#56118)
Adds parameters `loss_function` and `loss_function_parameter`
to regression.
2020-05-05 12:36:05 +03:00
Tom Veasey
58340c2dbe
[ML] Adds the class_assignment_objective parameter to classification (#52763)
Adds a new parameter for classification that enables choosing whether to assign labels to
maximise accuracy or to maximise the minimum class recall.

Fixes #52427.
2020-03-12 18:39:29 +00:00
Dimitris Athanasiou
4d2be9bd32
[ML] Add num_top_feature_importance_values param to regression and classi… (#50914)
Adds a new parameter to regression and classification that enables computation
of importance for the top most important features. The computation of the importance
is based on SHAP (SHapley Additive exPlanations) method.
2020-01-14 15:01:47 +02:00
Dimitris Athanasiou
269425b54d
[ML] Introduce randomize_seed setting for regression and classification (#49990)
This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.
2019-12-10 10:22:53 +02:00
Dimitris Athanasiou
bad07b76f7
[ML] Add optional source filtering during data frame reindexing (#49690)
This adds a `_source` setting under the `source` setting of a data
frame analytics config. The new `_source` is reusing the structure
of a `FetchSourceContext` like `analyzed_fields` does. Specifying
includes and excludes for source allows selecting which fields
will get reindexed and will be available in the destination index.

Closes #49531
2019-11-29 14:20:31 +02:00
Przemysław Witek
99c912b79f
Make num_top_classes parameter's default value equal to 2 (#48119) 2019-10-17 17:59:22 +02:00
Przemysław Witek
9b5770da0e
Add MlClientDocumentationIT tests for classification. (#47569) 2019-10-11 08:21:45 +02:00
Dimitris Athanasiou
e99435a7f6
[ML] Additional outlier detection parameters (#47600)
Adds the following parameters to `outlier_detection`:

- `compute_feature_influence` (boolean): whether to compute or not
   feature influence scores
- `outlier_fraction` (double): the proportion of the data set assumed
   to be outlying prior to running outlier detection
- `standardization_enabled` (boolean): whether to apply standardization
   to the feature values
2019-10-07 15:28:21 +03:00
Lisa Cawley
b1bbed84eb
[DOCS] Fixes data frame analytics job terminology in HLRC (#46758) 2019-09-16 10:00:44 -07:00
Lisa Cawley
b3dfd6e6d0
[DOCS] Updates dataframe transform terminology (#46642) 2019-09-16 08:28:19 -07:00
Lisa Cawley
1e63105e30
[DOCS] Adds missing icons to ML HLRC APIs (#46515) 2019-09-10 08:26:56 -07:00
Dimitris Athanasiou
eab64250eb
[ML][HLRC] Add data frame analytics regression analysis (#46024) 2019-08-28 08:12:10 +03:00
Dimitris Athanasiou
8af319481e
[ML] Add description to DF analytics (#45774) 2019-08-21 19:58:09 +03:00
Dimitris Athanasiou
5fa36dad0b
[ML] Machine learning data frame analytics (#43544)
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.

A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.

The APIs are:

- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}

When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:

1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index

In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:

- POST _ml/data_frame/_evaluate
2019-06-25 10:48:27 +03:00