Removes `testenv` annotations and related code. These annotations originally let you skip x-pack snippet tests in the docs. However, that's no longer possible.
Relates to #79309, #31619
This is a quality of life improvement for typical users. Almost all anomaly jobs will receive their data through a datafeed.
The datafeed config can now be supplied and is available in the datafeed field in the job config for creation and getting jobs.
Adds a new API that allows a user to reset
an anomaly detection job.
To use the API do:
```
POST _ml/anomaly_detectors/<job_id>_reset
```
The API removes all data associated to the job.
In particular, it deletes model state, results and stats.
However, job notifications and user annotations are not removed.
Also, the API can be called asynchronously by setting the parameter
`wait_for_completion` to `false` (defaults to `true`). When run
that way the API returns the task id for further monitoring.
In order to prevent the job from opening while it is resetting,
a new job field has been added called `blocked`. It is an object
that contains a `reason` and the `task_id`. `reason` can take
a value from ["delete", "reset", "revert"] as all these
operations should block the job from opening. The `task_id` is also
included in order to allow tracking the task if necessary.
Finally, this commit also sets the `blocked` field when
the revert snapshot API is called as a job should not be opened
while it is reverted to a different model snapshot.
When exporting and cloning ml configurations in a cluster it can be
frustrating to remove all the fields that were generated by
the plugin. Especially as the number of these fields change
from version to version.
This flag, exclude_generated, allows the GET config APIs to return
configurations with these generated fields removed.
APIs supporting this flag:
- GET _ml/anomaly_detection/<job_id>
- GET _ml/datafeeds/<datafeed_id>
- GET _ml/data_frame/analytics/<analytics_id>
The following fields are not returned in the objects:
- any field that is not user settable (e.g. version, create_time)
- any field that is a calculated default value (e.g. datafeed chunking_config)
- any field that is automatically set via another Elastic stack process (e.g. anomaly job custom_settings.created_by)
relates to #63055
This adds the new `for_export` flag to the following APIs:
- GET _ml/anomaly_detection/<job_id>
- GET _ml/datafeeds/<datafeed_id>
- GET _ml/data_frame/analytics/<analytics_id>
The flag is designed for cloning or exporting configuration objects to later be put into the same cluster or a separate cluster.
The following fields are not returned in the objects:
- any field that is not user settable (e.g. version, create_time)
- any field that is a calculated default value (e.g. datafeed chunking_config)
- any field that would effectively require changing to be of use (e.g. datafeed job_id)
- any field that is automatically set via another Elastic stack process (e.g. anomaly job custom_settings.created_by)
closes https://github.com/elastic/elasticsearch/issues/63055
This PR implements the following changes to make ML model snapshot
retention more flexible in advance of adding a UI for the feature in
an upcoming release.
- The default for `model_snapshot_retention_days` for new jobs is now
10 instead of 1
- There is a new job setting, `daily_model_snapshot_retention_after_days`,
that defaults to 1 for new jobs and `model_snapshot_retention_days`
for pre-7.8 jobs
- For days that are older than `model_snapshot_retention_days`, all
model snapshots are deleted as before
- For days that are in between `daily_model_snapshot_retention_after_days`
and `model_snapshot_retention_days` all but the first model snapshot
for that day are deleted
- The `retain` setting of model snapshots is still respected to allow
selected model snapshots to be retained indefinitely
Closes#52150
This change adds:
- A new option, allow_lazy_open, to anomaly detection jobs
- A new option, allow_lazy_start, to data frame analytics jobs
Both work in the same way: they allow a job to be
opened/started even if no ML node exists that can
accommodate the job immediately. In this situation
the job waits in the opening/starting state until ML
node capacity is available. (The starting state for data
frame analytics jobs is new in this change.)
Additionally, the ML nightly maintenance tasks now
creates audit warnings for ML jobs that are unassigned.
This means that jobs that cannot be assigned to an ML
node for a very long time will show a yellow warning
triangle in the UI.
A final change is that it is now possible to close a job
that is not assigned to a node without using force.
This is because previously jobs that were open but
not assigned to a node were an aberration, whereas
after this change they'll be relatively common.