Commit graph

11 commits

Author SHA1 Message Date
James Rodewig
a94e5cb7c4
[DOCS] Replace Wikipedia links with attribute (#61171) 2020-08-17 09:44:24 -04:00
Przemysław Witek
2a12dcf2e0
Rename binary_soft_classification evaluation to outlier_detection (#59951) 2020-07-21 14:27:57 +02:00
Przemysław Witek
38aa474dec
Implement pseudo Huber loss (PseudoHuber) evaluation metric for regression analysis (#58734) 2020-07-01 13:29:56 +02:00
Przemysław Witek
dfa06240fc
Implement MSLE (MeanSquaredLogarithmicError) evaluation metric for regression analysis (#58684) 2020-06-30 13:06:15 +02:00
Przemysław Witek
786ead630a
Implement precision and recall metrics for classification evaluation (#49671) 2019-12-19 16:07:09 +01:00
Przemysław Witek
94ee36d61e
Implement accuracy metric for multiclass classification (#47772) 2019-11-21 13:07:14 +01:00
Przemysław Witek
9b5770da0e
Add MlClientDocumentationIT tests for classification. (#47569) 2019-10-11 08:21:45 +02:00
Lisa Cawley
b1bbed84eb
[DOCS] Fixes data frame analytics job terminology in HLRC (#46758) 2019-09-16 10:00:44 -07:00
Lisa Cawley
1e63105e30
[DOCS] Adds missing icons to ML HLRC APIs (#46515) 2019-09-10 08:26:56 -07:00
Przemysław Witek
31f6e78acd
Allow the user to specify 'query' in Evaluate Data Frame request (#45775) 2019-08-22 08:27:38 +02:00
Dimitris Athanasiou
5fa36dad0b
[ML] Machine learning data frame analytics (#43544)
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.

A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.

The APIs are:

- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}

When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:

1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index

In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:

- POST _ml/data_frame/_evaluate
2019-06-25 10:48:27 +03:00