elasticsearch/docs/reference/inference/service-cohere.asciidoc
2025-01-29 03:38:23 +11:00

231 lines
No EOL
6.6 KiB
Text

[[infer-service-cohere]]
=== Cohere {infer} integration
.New API reference
[sidebar]
--
For the most up-to-date API details, refer to {api-es}/group/endpoint-inference[{infer-cap} APIs].
--
Creates an {infer} endpoint to perform an {infer} task with the `cohere` service.
[discrete]
[[infer-service-cohere-api-request]]
==== {api-request-title}
`PUT /_inference/<task_type>/<inference_id>`
[discrete]
[[infer-service-cohere-api-path-params]]
==== {api-path-parms-title}
`<inference_id>`::
(Required, string)
include::inference-shared.asciidoc[tag=inference-id]
`<task_type>`::
(Required, string)
include::inference-shared.asciidoc[tag=task-type]
+
--
Available task types:
* `completion`,
* `rerank`,
* `text_embedding`.
--
[discrete]
[[infer-service-cohere-api-request-body]]
==== {api-request-body-title}
`chunking_settings`::
(Optional, object)
include::inference-shared.asciidoc[tag=chunking-settings]
`max_chunk_size`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-max-chunking-size]
`overlap`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-overlap]
`sentence_overlap`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-sentence-overlap]
`strategy`:::
(Optional, string)
include::inference-shared.asciidoc[tag=chunking-settings-strategy]
`service`::
(Required, string)
The type of service supported for the specified task type. In this case,
`cohere`.
`service_settings`::
(Required, object)
include::inference-shared.asciidoc[tag=service-settings]
+
--
These settings are specific to the `cohere` service.
--
`api_key`:::
(Required, string)
A valid API key of your Cohere account.
You can find your Cohere API keys or you can create a new one
https://dashboard.cohere.com/api-keys[on the API keys settings page].
+
--
include::inference-shared.asciidoc[tag=api-key-admonition]
--
`rate_limit`:::
(Optional, object)
By default, the `cohere` service sets the number of requests allowed per minute to `10000`.
This value is the same for all task types.
This helps to minimize the number of rate limit errors returned from Cohere.
To modify this, set the `requests_per_minute` setting of this object in your service settings:
+
--
include::inference-shared.asciidoc[tag=request-per-minute-example]
More information about Cohere's rate limits can be found in https://docs.cohere.com/docs/going-live#production-key-specifications[Cohere's production key docs].
--
+
.`service_settings` for the `completion` task type
[%collapsible%closed]
=====
`model_id`::
(Optional, string)
The name of the model to use for the {infer} task.
To review the available `completion` models, refer to the
https://docs.cohere.com/docs/models#command[Cohere docs].
=====
+
.`service_settings` for the `rerank` task type
[%collapsible%closed]
=====
`model_id`::
(Optional, string)
The name of the model to use for the {infer} task.
To review the available `rerank` models, refer to the
https://docs.cohere.com/reference/rerank-1[Cohere docs].
=====
+
.`service_settings` for the `text_embedding` task type
[%collapsible%closed]
=====
`embedding_type`:::
(Optional, string)
Specifies the types of embeddings you want to get back.
Defaults to `float`.
Valid values are:
* `byte`: use it for signed int8 embeddings (this is a synonym of `int8`).
* `float`: use it for the default float embeddings.
* `int8`: use it for signed int8 embeddings.
`model_id`:::
(Optional, string)
The name of the model to use for the {infer} task.
To review the available `text_embedding` models, refer to the
https://docs.cohere.com/reference/embed[Cohere docs].
The default value for `text_embedding` is `embed-english-v2.0`.
`similarity`:::
(Optional, string)
Similarity measure. One of `cosine`, `dot_product`, `l2_norm`.
Defaults based on the `embedding_type` (`float` -> `dot_product`, `int8/byte` -> `cosine`).
=====
`task_settings`::
(Optional, object)
include::inference-shared.asciidoc[tag=task-settings]
+
.`task_settings` for the `rerank` task type
[%collapsible%closed]
=====
`return_documents`::
(Optional, boolean)
Specify whether to return doc text within the results.
`top_n`::
(Optional, integer)
The number of most relevant documents to return, defaults to the number of the documents.
If this {infer} endpoint is used in a `text_similarity_reranker` retriever query and `top_n` is set, it must be greater than or equal to `rank_window_size` in the query.
=====
+
.`task_settings` for the `text_embedding` task type
[%collapsible%closed]
=====
`input_type`:::
(Optional, string)
Specifies the type of input passed to the model.
Valid values are:
* `classification`: use it for embeddings passed through a text classifier.
* `clusterning`: use it for the embeddings run through a clustering algorithm.
* `ingest`: use it for storing document embeddings in a vector database.
* `search`: use it for storing embeddings of search queries run against a vector database to find relevant documents.
+
IMPORTANT: The `input_type` field is required when using embedding models `v3` and higher.
`truncate`:::
(Optional, string)
Specifies how the API handles inputs longer than the maximum token length.
Defaults to `END`.
Valid values are:
* `NONE`: when the input exceeds the maximum input token length an error is returned.
* `START`: when the input exceeds the maximum input token length the start of the input is discarded.
* `END`: when the input exceeds the maximum input token length the end of the input is discarded.
=====
[discrete]
[[inference-example-cohere]]
==== Cohere service examples
The following example shows how to create an {infer} endpoint called
`cohere-embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/cohere-embeddings
{
"service": "cohere",
"service_settings": {
"api_key": "<api_key>",
"model_id": "embed-english-light-v3.0",
"embedding_type": "byte"
}
}
------------------------------------------------------------
// TEST[skip:TBD]
The following example shows how to create an {infer} endpoint called
`cohere-rerank` to perform a `rerank` task type.
[source,console]
------------------------------------------------------------
PUT _inference/rerank/cohere-rerank
{
"service": "cohere",
"service_settings": {
"api_key": "<API-KEY>",
"model_id": "rerank-english-v3.0"
},
"task_settings": {
"top_n": 10,
"return_documents": true
}
}
------------------------------------------------------------
// TEST[skip:TBD]
For more examples, also review the
https://docs.cohere.com/docs/elasticsearch-and-cohere#rerank-search-results-with-cohere-and-elasticsearch[Cohere documentation].