mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-04-24 23:27:25 -04:00
255 lines
No EOL
7.1 KiB
Text
255 lines
No EOL
7.1 KiB
Text
[[infer-service-jinaai]]
|
|
=== JinaAI {infer} integration
|
|
|
|
Creates an {infer} endpoint to perform an {infer} task with the `jinaai` service.
|
|
|
|
|
|
[discrete]
|
|
[[infer-service-jinaai-api-request]]
|
|
==== {api-request-title}
|
|
|
|
`PUT /_inference/<task_type>/<inference_id>`
|
|
|
|
[discrete]
|
|
[[infer-service-jinaai-api-path-params]]
|
|
==== {api-path-parms-title}
|
|
|
|
`<inference_id>`::
|
|
(Required, string)
|
|
include::inference-shared.asciidoc[tag=inference-id]
|
|
|
|
`<task_type>`::
|
|
(Required, string)
|
|
include::inference-shared.asciidoc[tag=task-type]
|
|
+
|
|
--
|
|
Available task types:
|
|
|
|
* `text_embedding`,
|
|
* `rerank`.
|
|
--
|
|
|
|
[discrete]
|
|
[[infer-service-jinaai-api-request-body]]
|
|
==== {api-request-body-title}
|
|
|
|
`chunking_settings`::
|
|
(Optional, object)
|
|
include::inference-shared.asciidoc[tag=chunking-settings]
|
|
|
|
`max_chunk_size`:::
|
|
(Optional, integer)
|
|
include::inference-shared.asciidoc[tag=chunking-settings-max-chunking-size]
|
|
|
|
`overlap`:::
|
|
(Optional, integer)
|
|
include::inference-shared.asciidoc[tag=chunking-settings-overlap]
|
|
|
|
`sentence_overlap`:::
|
|
(Optional, integer)
|
|
include::inference-shared.asciidoc[tag=chunking-settings-sentence-overlap]
|
|
|
|
`strategy`:::
|
|
(Optional, string)
|
|
include::inference-shared.asciidoc[tag=chunking-settings-strategy]
|
|
|
|
`service`::
|
|
(Required, string)
|
|
The type of service supported for the specified task type. In this case,
|
|
`jinaai`.
|
|
|
|
`service_settings`::
|
|
(Required, object)
|
|
include::inference-shared.asciidoc[tag=service-settings]
|
|
+
|
|
--
|
|
These settings are specific to the `jinaai` service.
|
|
--
|
|
|
|
`api_key`:::
|
|
(Required, string)
|
|
A valid API key for your JinaAI account.
|
|
You can find it at https://jina.ai/embeddings/.
|
|
+
|
|
--
|
|
include::inference-shared.asciidoc[tag=api-key-admonition]
|
|
--
|
|
|
|
`rate_limit`:::
|
|
(Optional, object)
|
|
The default rate limit for the `jinaai` service is 2000 requests per minute for all task types.
|
|
You can modify this using the `requests_per_minute` setting in your service settings:
|
|
+
|
|
--
|
|
include::inference-shared.asciidoc[tag=request-per-minute-example]
|
|
|
|
More information about JinaAI's rate limits can be found in https://jina.ai/contact-sales/#rate-limit.
|
|
--
|
|
+
|
|
.`service_settings` for the `rerank` task type
|
|
[%collapsible%closed]
|
|
=====
|
|
`model_id`::
|
|
(Required, string)
|
|
The name of the model to use for the {infer} task.
|
|
To review the available `rerank` compatible models, refer to https://jina.ai/reranker.
|
|
=====
|
|
+
|
|
.`service_settings` for the `text_embedding` task type
|
|
[%collapsible%closed]
|
|
=====
|
|
`model_id`:::
|
|
(Optional, string)
|
|
The name of the model to use for the {infer} task.
|
|
To review the available `text_embedding` models, refer to the
|
|
https://jina.ai/embeddings/.
|
|
|
|
`similarity`:::
|
|
(Optional, string)
|
|
Similarity measure. One of `cosine`, `dot_product`, `l2_norm`.
|
|
Defaults based on the `embedding_type` (`float` -> `dot_product`, `int8/byte` -> `cosine`).
|
|
=====
|
|
|
|
|
|
|
|
`task_settings`::
|
|
(Optional, object)
|
|
include::inference-shared.asciidoc[tag=task-settings]
|
|
+
|
|
.`task_settings` for the `rerank` task type
|
|
[%collapsible%closed]
|
|
=====
|
|
`return_documents`::
|
|
(Optional, boolean)
|
|
Specify whether to return doc text within the results.
|
|
|
|
`top_n`::
|
|
(Optional, integer)
|
|
The number of most relevant documents to return, defaults to the number of the documents.
|
|
If this {infer} endpoint is used in a `text_similarity_reranker` retriever query and `top_n` is set, it must be greater than or equal to `rank_window_size` in the query.
|
|
=====
|
|
+
|
|
.`task_settings` for the `text_embedding` task type
|
|
[%collapsible%closed]
|
|
=====
|
|
`task`:::
|
|
(Optional, string)
|
|
Specifies the task passed to the model.
|
|
Valid values are:
|
|
* `classification`: use it for embeddings passed through a text classifier.
|
|
* `clustering`: use it for the embeddings run through a clustering algorithm.
|
|
* `ingest`: use it for storing document embeddings in a vector database.
|
|
* `search`: use it for storing embeddings of search queries run against a vector database to find relevant documents.
|
|
=====
|
|
|
|
|
|
[discrete]
|
|
[[inference-example-jinaai]]
|
|
==== JinaAI service examples
|
|
|
|
The following examples demonstrate how to create {infer} endpoints for `text_embeddings` and `rerank` tasks using the JinaAI service and use them in search requests.
|
|
|
|
First, we create the `embeddings` service:
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT _inference/text_embedding/jinaai-embeddings
|
|
{
|
|
"service": "jinaai",
|
|
"service_settings": {
|
|
"model_id": "jina-embeddings-v3",
|
|
"api_key": "<api_key>"
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML]
|
|
|
|
Then, we create the `rerank` service:
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT _inference/rerank/jinaai-rerank
|
|
{
|
|
"service": "jinaai",
|
|
"service_settings": {
|
|
"api_key": "<api_key>",
|
|
"model_id": "jina-reranker-v2-base-multilingual"
|
|
},
|
|
"task_settings": {
|
|
"top_n": 10,
|
|
"return_documents": true
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML]
|
|
|
|
Now we can create an index that will use `jinaai-embeddings` service to index the documents.
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT jinaai-index
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content": {
|
|
"type": "semantic_text",
|
|
"inference_id": "jinaai-embeddings"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML]
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT jinaai-index/_bulk
|
|
{ "index" : { "_index" : "jinaai-index", "_id" : "1" } }
|
|
{"content": "Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades."}
|
|
{ "index" : { "_index" : "jinaai-index", "_id" : "2" } }
|
|
{"content": "She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. "}
|
|
{ "index" : { "_index" : "jinaai-index", "_id" : "3" } }
|
|
{"content": "Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists."}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML]
|
|
|
|
Now, with the index created, we can search with and without the reranker service.
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
GET jinaai-index/_search
|
|
{
|
|
"query": {
|
|
"semantic": {
|
|
"field": "content",
|
|
"query": "who inspired taking care of the sea?"
|
|
}
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML]
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
POST jinaai-index/_search
|
|
{
|
|
"retriever": {
|
|
"text_similarity_reranker": {
|
|
"retriever": {
|
|
"standard": {
|
|
"query": {
|
|
"semantic": {
|
|
"field": "content",
|
|
"query": "who inspired taking care of the sea?"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"field": "content",
|
|
"rank_window_size": 100,
|
|
"inference_id": "jinaai-rerank",
|
|
"inference_text": "who inspired taking care of the sea?"
|
|
}
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:uses ML] |