mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-04-25 23:57:20 -04:00
* add docs and embeddings tutorial pieces * cleanup openai reference * Suggested cleanups; add missing div tag * one more change for clarity (requests per minute)
175 lines
6 KiB
Text
175 lines
6 KiB
Text
// tag::cohere[]
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT cohere-embeddings
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content_embedding": { <1>
|
|
"type": "dense_vector", <2>
|
|
"dims": 1024, <3>
|
|
"element_type": "byte"
|
|
},
|
|
"content": { <4>
|
|
"type": "text" <5>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> The name of the field to contain the generated tokens. It must be refrenced
|
|
in the {infer} pipeline configuration in the next step.
|
|
<2> The field to contain the tokens is a `dense_vector` field.
|
|
<3> The output dimensions of the model. Find this value in the
|
|
https://docs.cohere.com/reference/embed[Cohere documentation] of the model you
|
|
use.
|
|
<4> The name of the field from which to create the dense vector representation.
|
|
In this example, the name of the field is `content`. It must be referenced in
|
|
the {infer} pipeline configuration in the next step.
|
|
<5> The field type which is text in this example.
|
|
|
|
// end::cohere[]
|
|
|
|
// tag::hugging-face[]
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT hugging-face-embeddings
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content_embedding": { <1>
|
|
"type": "dense_vector", <2>
|
|
"dims": 768, <3>
|
|
"element_type": "float"
|
|
},
|
|
"content": { <4>
|
|
"type": "text" <5>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> The name of the field to contain the generated tokens. It must be referenced
|
|
in the {infer} pipeline configuration in the next step.
|
|
<2> The field to contain the tokens is a `dense_vector` field.
|
|
<3> The output dimensions of the model. Find this value in the
|
|
https://huggingface.co/sentence-transformers/all-mpnet-base-v2[HuggingFace model documentation].
|
|
<4> The name of the field from which to create the dense vector representation.
|
|
In this example, the name of the field is `content`. It must be referenced in
|
|
the {infer} pipeline configuration in the next step.
|
|
<5> The field type which is text in this example.
|
|
|
|
// end::hugging-face[]
|
|
|
|
// tag::openai[]
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT openai-embeddings
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content_embedding": { <1>
|
|
"type": "dense_vector", <2>
|
|
"dims": 1536, <3>
|
|
"element_type": "float",
|
|
"similarity": "dot_product" <4>
|
|
},
|
|
"content": { <5>
|
|
"type": "text" <6>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> The name of the field to contain the generated tokens. It must be referenced
|
|
in the {infer} pipeline configuration in the next step.
|
|
<2> The field to contain the tokens is a `dense_vector` field.
|
|
<3> The output dimensions of the model. Find this value in the
|
|
https://platform.openai.com/docs/guides/embeddings/embedding-models[OpenAI documentation]
|
|
of the model you use.
|
|
<4> The faster` dot_product` function can be used to calculate similarity
|
|
because OpenAI embeddings are normalised to unit length. You can check the
|
|
https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use[OpenAI docs]
|
|
about which similarity function to use.
|
|
<5> The name of the field from which to create the dense vector representation.
|
|
In this example, the name of the field is `content`. It must be referenced in
|
|
the {infer} pipeline configuration in the next step.
|
|
<6> The field type which is text in this example.
|
|
|
|
// end::openai[]
|
|
|
|
// tag::azure-openai[]
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT azure-openai-embeddings
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content_embedding": { <1>
|
|
"type": "dense_vector", <2>
|
|
"dims": 1536, <3>
|
|
"element_type": "float",
|
|
"similarity": "dot_product" <4>
|
|
},
|
|
"content": { <5>
|
|
"type": "text" <6>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> The name of the field to contain the generated tokens. It must be referenced
|
|
in the {infer} pipeline configuration in the next step.
|
|
<2> The field to contain the tokens is a `dense_vector` field.
|
|
<3> The output dimensions of the model. Find this value in the
|
|
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#embeddings-models[Azure OpenAI documentation]
|
|
of the model you use.
|
|
<4> For Azure OpenAI embeddings, the `dot_product` function should be used to
|
|
calculate similarity as Azure OpenAI embeddings are normalised to unit length.
|
|
See the
|
|
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/understand-embeddings[Azure OpenAI embeddings]
|
|
documentation for more information on the model specifications.
|
|
<5> The name of the field from which to create the dense vector representation.
|
|
In this example, the name of the field is `content`. It must be referenced in
|
|
the {infer} pipeline configuration in the next step.
|
|
<6> The field type which is text in this example.
|
|
|
|
// end::azure-openai[]
|
|
|
|
// tag::azure-ai-studio[]
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT azure-ai-studio-embeddings
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"content_embedding": { <1>
|
|
"type": "dense_vector", <2>
|
|
"dims": 1536, <3>
|
|
"element_type": "float",
|
|
"similarity": "dot_product" <4>
|
|
},
|
|
"content": { <5>
|
|
"type": "text" <6>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> The name of the field to contain the generated tokens. It must be referenced
|
|
in the {infer} pipeline configuration in the next step.
|
|
<2> The field to contain the tokens is a `dense_vector` field.
|
|
<3> The output dimensions of the model. This value may be found on the model card in your Azure AI Studio deployment.
|
|
<4> For Azure AI Studio embeddings, the `dot_product` function should be used to
|
|
calculate similarity.
|
|
<5> The name of the field from which to create the dense vector representation.
|
|
In this example, the name of the field is `content`. It must be referenced in
|
|
the {infer} pipeline configuration in the next step.
|
|
<6> The field type which is text in this example.
|
|
|
|
// end::azure-ai-studio[]
|