elasticsearch/docs/reference/aggregations/metrics/rate-aggregation.asciidoc
James Rodewig f56a0f4b66
[DOCS] Remove testenv annotations from doc snippet tests (#80023)
Removes `testenv` annotations and related code. These annotations originally let you skip x-pack snippet tests in the docs. However, that's no longer possible.

Relates to #79309, #31619
2021-11-05 18:38:50 -04:00

481 lines
12 KiB
Text

[role="xpack"]
[[search-aggregations-metrics-rate-aggregation]]
=== Rate aggregation
++++
<titleabbrev>Rate</titleabbrev>
++++
A `rate` metrics aggregation can be used only inside a `date_histogram` or `composite` aggregation. It calculates a rate of documents
or a field in each bucket. The field values can be extracted from specific numeric or
<<histogram,histogram fields>> in the documents.
NOTE: For `composite` aggregations, there must be exactly one `date_histogram` source for the `rate` aggregation to be supported.
==== Syntax
A `rate` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"rate": {
"unit": "month",
"field": "requests"
}
}
--------------------------------------------------
// NOTCONSOLE
The following request will group all sales records into monthly buckets and then convert the number of sales transactions in each bucket
into per annual sales rate.
[source,console]
--------------------------------------------------
GET sales/_search
{
"size": 0,
"aggs": {
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month" <1>
},
"aggs": {
"my_rate": {
"rate": {
"unit": "year" <2>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:sales]
<1> Histogram is grouped by month.
<2> But the rate is converted into annual rate.
The response will return the annual rate of transactions in each bucket. Since there are 12 months per year, the annual rate will
be automatically calculated by multiplying the monthly rate by 12.
[source,console-result]
--------------------------------------------------
{
...
"aggregations" : {
"by_date" : {
"buckets" : [
{
"key_as_string" : "2015/01/01 00:00:00",
"key" : 1420070400000,
"doc_count" : 3,
"my_rate" : {
"value" : 36.0
}
},
{
"key_as_string" : "2015/02/01 00:00:00",
"key" : 1422748800000,
"doc_count" : 2,
"my_rate" : {
"value" : 24.0
}
},
{
"key_as_string" : "2015/03/01 00:00:00",
"key" : 1425168000000,
"doc_count" : 2,
"my_rate" : {
"value" : 24.0
}
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
Instead of counting the number of documents, it is also possible to calculate a sum of all values of the fields in the documents in each
bucket or the number of values in each bucket. The following request will group all sales records into monthly bucket and than calculate
the total monthly sales and convert them into average daily sales.
[source,console]
--------------------------------------------------
GET sales/_search
{
"size": 0,
"aggs": {
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month" <1>
},
"aggs": {
"avg_price": {
"rate": {
"field": "price", <2>
"unit": "day" <3>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:sales]
<1> Histogram is grouped by month.
<2> Calculate sum of all sale prices
<3> Convert to average daily sales
The response will contain the average daily sale prices for each month.
[source,console-result]
--------------------------------------------------
{
...
"aggregations" : {
"by_date" : {
"buckets" : [
{
"key_as_string" : "2015/01/01 00:00:00",
"key" : 1420070400000,
"doc_count" : 3,
"avg_price" : {
"value" : 17.741935483870968
}
},
{
"key_as_string" : "2015/02/01 00:00:00",
"key" : 1422748800000,
"doc_count" : 2,
"avg_price" : {
"value" : 2.142857142857143
}
},
{
"key_as_string" : "2015/03/01 00:00:00",
"key" : 1425168000000,
"doc_count" : 2,
"avg_price" : {
"value" : 12.096774193548388
}
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
You can also take advantage of `composite` aggregations to calculate the average daily sale price for each item in
your inventory
[source,console]
--------------------------------------------------
GET sales/_search?filter_path=aggregations&size=0
{
"aggs": {
"buckets": {
"composite": { <1>
"sources": [
{
"month": {
"date_histogram": { <2>
"field": "date",
"calendar_interval": "month"
}
}
},
{
"type": { <3>
"terms": {
"field": "type"
}
}
}
]
},
"aggs": {
"avg_price": {
"rate": {
"field": "price", <4>
"unit": "day" <5>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:sales]
<1> Composite aggregation with a date histogram source
and a source for the item type.
<2> The date histogram source grouping monthly
<3> The terms source grouping for each sale item type
<4> Calculate sum of all sale prices, per month and item
<5> Convert to average daily sales per item
The response will contain the average daily sale prices for each month per item.
[source,console-result]
--------------------------------------------------
{
"aggregations" : {
"buckets" : {
"after_key" : {
"month" : 1425168000000,
"type" : "t-shirt"
},
"buckets" : [
{
"key" : {
"month" : 1420070400000,
"type" : "bag"
},
"doc_count" : 1,
"avg_price" : {
"value" : 4.838709677419355
}
},
{
"key" : {
"month" : 1420070400000,
"type" : "hat"
},
"doc_count" : 1,
"avg_price" : {
"value" : 6.451612903225806
}
},
{
"key" : {
"month" : 1420070400000,
"type" : "t-shirt"
},
"doc_count" : 1,
"avg_price" : {
"value" : 6.451612903225806
}
},
{
"key" : {
"month" : 1422748800000,
"type" : "hat"
},
"doc_count" : 1,
"avg_price" : {
"value" : 1.7857142857142858
}
},
{
"key" : {
"month" : 1422748800000,
"type" : "t-shirt"
},
"doc_count" : 1,
"avg_price" : {
"value" : 0.35714285714285715
}
},
{
"key" : {
"month" : 1425168000000,
"type" : "hat"
},
"doc_count" : 1,
"avg_price" : {
"value" : 6.451612903225806
}
},
{
"key" : {
"month" : 1425168000000,
"type" : "t-shirt"
},
"doc_count" : 1,
"avg_price" : {
"value" : 5.645161290322581
}
}
]
}
}
}
--------------------------------------------------
By adding the `mode` parameter with the value `value_count`, we can change the calculation from `sum` to the number of values of the field:
[source,console]
--------------------------------------------------
GET sales/_search
{
"size": 0,
"aggs": {
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month" <1>
},
"aggs": {
"avg_number_of_sales_per_year": {
"rate": {
"field": "price", <2>
"unit": "year", <3>
"mode": "value_count" <4>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:sales]
<1> Histogram is grouped by month.
<2> Calculate number of all sale prices
<3> Convert to annual counts
<4> Changing the mode to value count
The response will contain the average daily sale prices for each month.
[source,console-result]
--------------------------------------------------
{
...
"aggregations" : {
"by_date" : {
"buckets" : [
{
"key_as_string" : "2015/01/01 00:00:00",
"key" : 1420070400000,
"doc_count" : 3,
"avg_number_of_sales_per_year" : {
"value" : 36.0
}
},
{
"key_as_string" : "2015/02/01 00:00:00",
"key" : 1422748800000,
"doc_count" : 2,
"avg_number_of_sales_per_year" : {
"value" : 24.0
}
},
{
"key_as_string" : "2015/03/01 00:00:00",
"key" : 1425168000000,
"doc_count" : 2,
"avg_number_of_sales_per_year" : {
"value" : 24.0
}
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
By default `sum` mode is used.
`"mode": "sum"`:: calculate the sum of all values field
`"mode": "value_count"`:: use the number of values in the field
==== Relationship between bucket sizes and rate
The `rate` aggregation supports all rate that can be used <<calendar_intervals,calendar_intervals parameter>> of `date_histogram`
aggregation. The specified rate should compatible with the `date_histogram` aggregation interval, i.e. it should be possible to
convert the bucket size into the rate. By default the interval of the `date_histogram` is used.
`"rate": "second"`:: compatible with all intervals
`"rate": "minute"`:: compatible with all intervals
`"rate": "hour"`:: compatible with all intervals
`"rate": "day"`:: compatible with all intervals
`"rate": "week"`:: compatible with all intervals
`"rate": "month"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
`"rate": "quarter"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
`"rate": "year"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
There is also an additional limitations if the date histogram is not a direct parent of the rate histogram. In this case both rate interval
and histogram interval have to be in the same group: [`second`, ` minute`, `hour`, `day`, `week`] or [`month`, `quarter`, `year`]. For
example, if the date histogram is `month` based, only rate intervals of `month`, `quarter` or `year` are supported. If the date histogram
is `day` based, only `second`, ` minute`, `hour`, `day`, and `week` rate intervals are supported.
==== Script
If you need to run the aggregation against values that aren't indexed, run the
aggregation on a <<runtime,runtime field>>. For example, if we need to adjust
our prices before calculating rates:
[source,console]
----
GET sales/_search
{
"size": 0,
"runtime_mappings": {
"price.adjusted": {
"type": "double",
"script": {
"source": "emit(doc['price'].value * params.adjustment)",
"params": {
"adjustment": 0.9
}
}
}
},
"aggs": {
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"avg_price": {
"rate": {
"field": "price.adjusted"
}
}
}
}
}
}
----
// TEST[setup:sales]
[source,console-result]
----
{
...
"aggregations" : {
"by_date" : {
"buckets" : [
{
"key_as_string" : "2015/01/01 00:00:00",
"key" : 1420070400000,
"doc_count" : 3,
"avg_price" : {
"value" : 495.0
}
},
{
"key_as_string" : "2015/02/01 00:00:00",
"key" : 1422748800000,
"doc_count" : 2,
"avg_price" : {
"value" : 54.0
}
},
{
"key_as_string" : "2015/03/01 00:00:00",
"key" : 1425168000000,
"doc_count" : 2,
"avg_price" : {
"value" : 337.5
}
}
]
}
}
}
----
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]