elasticsearch/docs/reference/aggregations/metrics/sum-aggregation.asciidoc
James Rodewig 74e4add3a8
[DOCS] Update sum aggregation for histograms (#84493) (#84496)
Fixes an error and test snippets for the sum aggregation example for histograms.

Closes #84491

Co-authored-by: James Rodewig <40268737+jrodewig@users.noreply.github.com>
(cherry picked from commit fb45ac9dea)

Co-authored-by: Maja Grubic <maja.grubic@elastic.co>
2022-03-01 08:42:05 -05:00

191 lines
4.3 KiB
Text

[[search-aggregations-metrics-sum-aggregation]]
=== Sum aggregation
++++
<titleabbrev>Sum</titleabbrev>
++++
A `single-value` metrics aggregation that sums up numeric values that are extracted from the aggregated documents.
These values can be extracted either from specific numeric or <<histogram,histogram>> fields.
Assuming the data consists of documents representing sales records we can sum
the sale price of all hats with:
[source,console]
--------------------------------------------------
POST /sales/_search?size=0
{
"query": {
"constant_score": {
"filter": {
"match": { "type": "hat" }
}
}
},
"aggs": {
"hat_prices": { "sum": { "field": "price" } }
}
}
--------------------------------------------------
// TEST[setup:sales]
Resulting in:
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"hat_prices": {
"value": 450.0
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
The name of the aggregation (`hat_prices` above) also serves as the key by which the aggregation result can be retrieved from the returned response.
==== Script
If you need to get the `sum` for something more complex than a single
field, run the aggregation on a <<runtime,runtime field>>.
[source,console]
----
POST /sales/_search?size=0
{
"runtime_mappings": {
"price.weighted": {
"type": "double",
"script": """
double price = doc['price'].value;
if (doc['promoted'].value) {
price *= 0.8;
}
emit(price);
"""
}
},
"query": {
"constant_score": {
"filter": {
"match": { "type": "hat" }
}
}
},
"aggs": {
"hat_prices": {
"sum": {
"field": "price.weighted"
}
}
}
}
----
// TEST[setup:sales]
// TEST[s/size=0/size=0&filter_path=aggregations/]
////
[source,console-result]
----
{
"aggregations": {
"hat_prices": {
"value": 370.0
}
}
}
----
////
==== Missing value
The `missing` parameter defines how documents that are missing a value should
be treated. By default documents missing the value will be ignored but it is
also possible to treat them as if they had a value. For example, this treats
all hat sales without a price as being `100`.
[source,console]
--------------------------------------------------
POST /sales/_search?size=0
{
"query": {
"constant_score": {
"filter": {
"match": { "type": "hat" }
}
}
},
"aggs": {
"hat_prices": {
"sum": {
"field": "price",
"missing": 100 <1>
}
}
}
}
--------------------------------------------------
// TEST[setup:sales]
[[search-aggregations-metrics-sum-aggregation-histogram-fields]]
==== Histogram fields
When sum is computed on <<histogram,histogram fields>>, the result of the aggregation is the sum of all elements in the `values`
array multiplied by the number in the same position in the `counts` array.
For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:
[source,console]
--------------------------------------------------
PUT metrics_index
{
"mappings": {
"properties": {
"latency_histo": { "type": "histogram" }
}
}
}
PUT metrics_index/_doc/1?refresh
{
"network.name" : "net-1",
"latency_histo" : {
"values" : [0.1, 0.2, 0.3, 0.4, 0.5],
"counts" : [3, 7, 23, 12, 6]
}
}
PUT metrics_index/_doc/2?refresh
{
"network.name" : "net-2",
"latency_histo" : {
"values" : [0.1, 0.2, 0.3, 0.4, 0.5],
"counts" : [8, 17, 8, 7, 6]
}
}
POST /metrics_index/_search?size=0&filter_path=aggregations
{
"aggs" : {
"total_latency" : { "sum" : { "field" : "latency_histo" } }
}
}
--------------------------------------------------
For each histogram field, the `sum` aggregation will add each number in the
`values` array, multiplied by its associated count in the `counts` array.
Eventually, it will add all values for all histograms and return the following
result:
[source,console-result]
--------------------------------------------------
{
"aggregations": {
"total_latency": {
"value": 28.8
}
}
}
--------------------------------------------------