mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-04-25 15:47:23 -04:00
Fixes an error and test snippets for the sum aggregation example for histograms.
Closes #84491
Co-authored-by: James Rodewig <40268737+jrodewig@users.noreply.github.com>
(cherry picked from commit fb45ac9dea
)
Co-authored-by: Maja Grubic <maja.grubic@elastic.co>
191 lines
4.3 KiB
Text
191 lines
4.3 KiB
Text
[[search-aggregations-metrics-sum-aggregation]]
|
|
=== Sum aggregation
|
|
++++
|
|
<titleabbrev>Sum</titleabbrev>
|
|
++++
|
|
|
|
A `single-value` metrics aggregation that sums up numeric values that are extracted from the aggregated documents.
|
|
These values can be extracted either from specific numeric or <<histogram,histogram>> fields.
|
|
|
|
Assuming the data consists of documents representing sales records we can sum
|
|
the sale price of all hats with:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
POST /sales/_search?size=0
|
|
{
|
|
"query": {
|
|
"constant_score": {
|
|
"filter": {
|
|
"match": { "type": "hat" }
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"hat_prices": { "sum": { "field": "price" } }
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[setup:sales]
|
|
|
|
Resulting in:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
...
|
|
"aggregations": {
|
|
"hat_prices": {
|
|
"value": 450.0
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
|
|
|
|
The name of the aggregation (`hat_prices` above) also serves as the key by which the aggregation result can be retrieved from the returned response.
|
|
|
|
==== Script
|
|
|
|
If you need to get the `sum` for something more complex than a single
|
|
field, run the aggregation on a <<runtime,runtime field>>.
|
|
|
|
[source,console]
|
|
----
|
|
POST /sales/_search?size=0
|
|
{
|
|
"runtime_mappings": {
|
|
"price.weighted": {
|
|
"type": "double",
|
|
"script": """
|
|
double price = doc['price'].value;
|
|
if (doc['promoted'].value) {
|
|
price *= 0.8;
|
|
}
|
|
emit(price);
|
|
"""
|
|
}
|
|
},
|
|
"query": {
|
|
"constant_score": {
|
|
"filter": {
|
|
"match": { "type": "hat" }
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"hat_prices": {
|
|
"sum": {
|
|
"field": "price.weighted"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
// TEST[setup:sales]
|
|
// TEST[s/size=0/size=0&filter_path=aggregations/]
|
|
|
|
////
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"aggregations": {
|
|
"hat_prices": {
|
|
"value": 370.0
|
|
}
|
|
}
|
|
}
|
|
----
|
|
////
|
|
|
|
==== Missing value
|
|
|
|
The `missing` parameter defines how documents that are missing a value should
|
|
be treated. By default documents missing the value will be ignored but it is
|
|
also possible to treat them as if they had a value. For example, this treats
|
|
all hat sales without a price as being `100`.
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
POST /sales/_search?size=0
|
|
{
|
|
"query": {
|
|
"constant_score": {
|
|
"filter": {
|
|
"match": { "type": "hat" }
|
|
}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"hat_prices": {
|
|
"sum": {
|
|
"field": "price",
|
|
"missing": 100 <1>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[setup:sales]
|
|
|
|
[[search-aggregations-metrics-sum-aggregation-histogram-fields]]
|
|
==== Histogram fields
|
|
|
|
When sum is computed on <<histogram,histogram fields>>, the result of the aggregation is the sum of all elements in the `values`
|
|
array multiplied by the number in the same position in the `counts` array.
|
|
|
|
For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT metrics_index
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"latency_histo": { "type": "histogram" }
|
|
}
|
|
}
|
|
}
|
|
|
|
PUT metrics_index/_doc/1?refresh
|
|
{
|
|
"network.name" : "net-1",
|
|
"latency_histo" : {
|
|
"values" : [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
"counts" : [3, 7, 23, 12, 6]
|
|
}
|
|
}
|
|
|
|
PUT metrics_index/_doc/2?refresh
|
|
{
|
|
"network.name" : "net-2",
|
|
"latency_histo" : {
|
|
"values" : [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
"counts" : [8, 17, 8, 7, 6]
|
|
}
|
|
}
|
|
|
|
POST /metrics_index/_search?size=0&filter_path=aggregations
|
|
{
|
|
"aggs" : {
|
|
"total_latency" : { "sum" : { "field" : "latency_histo" } }
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
For each histogram field, the `sum` aggregation will add each number in the
|
|
`values` array, multiplied by its associated count in the `counts` array.
|
|
|
|
Eventually, it will add all values for all histograms and return the following
|
|
result:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
"aggregations": {
|
|
"total_latency": {
|
|
"value": 28.8
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|