elasticsearch/docs/reference/aggregations/bucket/geotilegrid-aggregation.asciidoc
Craig Taverner 5f7ea792ac
Soft-deprecation of point/geo_point formats (#86835)
* Soft-deprecation of point/geo_point formats

Since GeoJSON and WKT are now common formats for all three types:
  geo_shape, geo_point and point
We decided to soft-deprecate the other point formats by ordering:
* GeoJSON (object with keys `type` and `coordinates`)
* WKT `POINT(x y)`
* Object with keys `lat` and `lon` (or `x` and `y` for point)
* Array [lon,lat]
* String `"lat,lon"` (or `"x,y"` in point)
* String with geohash (only in `geo_point`)

The geohash is last because it is only in one field type.
The string version is second last because it is the most controversial
being the only version to reverse the coordinate order from all other
formats (for geo_point only, since the coordinates are not reversed
in point).

In addition we replaced many examples in both documentation and tests
to prioritize WKT over the plain string format.

Many remaining examples of array format or object with keys still exist
and could be replaced by, for example, GeoJSON, if we feel the need.

* Incorrect quote position
2022-05-17 23:46:43 +02:00

256 lines
7.6 KiB
Text

[[search-aggregations-bucket-geotilegrid-aggregation]]
=== Geotile grid aggregation
++++
<titleabbrev>Geotile grid</titleabbrev>
++++
A multi-bucket aggregation that groups <<geo-point,`geo_point`>> and
<<geo-shape,`geo_shape`>> values into buckets that represent a grid.
The resulting grid can be sparse and only
contains cells that have matching data. Each cell corresponds to a
{wikipedia}/Tiled_web_map[map tile] as used by many online map
sites. Each cell is labeled using a "{zoom}/{x}/{y}" format, where zoom is equal
to the user-specified precision.
* High precision keys have a larger range for x and y, and represent tiles that
cover only a small area.
* Low precision keys have a smaller range for x and y, and represent tiles that
each cover a large area.
See https://wiki.openstreetmap.org/wiki/Zoom_levels[Zoom level documentation]
on how precision (zoom) correlates to size on the ground. Precision for this
aggregation can be between 0 and 29, inclusive.
WARNING: The highest-precision geotile of length 29 produces cells that cover
less than a 10cm by 10cm of land and so high-precision requests can be very
costly in terms of RAM and result sizes. Please see the example below on how
to first filter the aggregation to a smaller geographic area before requesting
high-levels of detail.
You can only use `geotile_grid` to aggregate an explicitly mapped `geo_point` or
`geo_shape` field. If the `geo_point` field contains an array, `geotile_grid`
aggregates all the array values.
==== Simple low-precision request
[source,console,id=geotilegrid-aggregation-example]
--------------------------------------------------
PUT /museums
{
"mappings": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
POST /museums/_bulk?refresh
{"index":{"_id":1}}
{"location": "POINT (4.912350 52.374081)", "name": "NEMO Science Museum"}
{"index":{"_id":2}}
{"location": "POINT (4.901618 52.369219)", "name": "Museum Het Rembrandthuis"}
{"index":{"_id":3}}
{"location": "POINT (4.914722 52.371667)", "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":4}}
{"location": "POINT (4.405200 51.222900)", "name": "Letterenhuis"}
{"index":{"_id":5}}
{"location": "POINT (2.336389 48.861111)", "name": "Musée du Louvre"}
{"index":{"_id":6}}
{"location": "POINT (2.327000 48.860000)", "name": "Musée d'Orsay"}
POST /museums/_search?size=0
{
"aggregations": {
"large-grid": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
}
}
--------------------------------------------------
Response:
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"large-grid": {
"buckets": [
{
"key": "8/131/84",
"doc_count": 3
},
{
"key": "8/129/88",
"doc_count": 2
},
{
"key": "8/131/85",
"doc_count": 1
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
==== High-precision requests
When requesting detailed buckets (typically for displaying a "zoomed in" map)
a filter like <<query-dsl-geo-bounding-box-query,geo_bounding_box>> should be
applied to narrow the subject area otherwise potentially millions of buckets
will be created and returned.
[source,console]
--------------------------------------------------
POST /museums/_search?size=0
{
"aggregations": {
"zoomed-in": {
"filter": {
"geo_bounding_box": {
"location": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
},
"aggregations": {
"zoom1": {
"geotile_grid": {
"field": "location",
"precision": 22
}
}
}
}
}
}
--------------------------------------------------
// TEST[continued]
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"zoomed-in": {
"doc_count": 3,
"zoom1": {
"buckets": [
{
"key": "22/2154412/1378379",
"doc_count": 1
},
{
"key": "22/2154385/1378332",
"doc_count": 1
},
{
"key": "22/2154259/1378425",
"doc_count": 1
}
]
}
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
==== Requests with additional bounding box filtering
The `geotile_grid` aggregation supports an optional `bounds` parameter
that restricts the cells considered to those that intersects the
bounds provided. The `bounds` parameter accepts the bounding box in
all the same <<query-dsl-geo-bounding-box-query-accepted-formats,accepted formats>> of the
bounds specified in the Geo Bounding Box Query. This bounding box can be used with or
without an additional `geo_bounding_box` query for filtering the points prior to aggregating.
It is an independent bounding box that can intersect with, be equal to, or be disjoint
to any additional `geo_bounding_box` queries defined in the context of the aggregation.
[source,console,id=geotilegrid-aggregation-with-bounds]
--------------------------------------------------
POST /museums/_search?size=0
{
"aggregations": {
"tiles-in-bounds": {
"geotile_grid": {
"field": "location",
"precision": 22,
"bounds": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
}
}
}
--------------------------------------------------
// TEST[continued]
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"tiles-in-bounds": {
"buckets": [
{
"key": "22/2154412/1378379",
"doc_count": 1
},
{
"key": "22/2154385/1378332",
"doc_count": 1
},
{
"key": "22/2154259/1378425",
"doc_count": 1
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
[discrete]
[role="xpack"]
==== Aggregating `geo_shape` fields
Aggregating on <<geo-shape>> fields works just as it does for points, except that a single
shape can be counted for in multiple tiles. A shape will contribute to the count of matching values
if any part of its shape intersects with that tile. Below is an image that demonstrates this:
image:images/spatial/geoshape_grid.png[]
==== Options
[horizontal]
field:: Mandatory. The name of the field indexed with GeoPoints.
precision:: Optional. The integer zoom of the key used to define
cells/buckets in the results. Defaults to 7.
Values outside of [0,29] will be rejected.
bounds: Optional. The bounding box to filter the points in the bucket.
size:: Optional. The maximum number of geohash buckets to return
(defaults to 10,000). When results are trimmed, buckets are
prioritised based on the volumes of documents they contain.
shard_size:: Optional. To allow for more accurate counting of the top cells
returned in the final result the aggregation defaults to
returning `max(10,(size x number-of-shards))` buckets from each
shard. If this heuristic is undesirable, the number considered
from each shard can be over-ridden using this parameter.