mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-04-25 07:37:19 -04:00
187 lines
5.8 KiB
Text
187 lines
5.8 KiB
Text
[[infer-service-elasticsearch]]
|
|
=== Elasticsearch {infer} service
|
|
|
|
Creates an {infer} endpoint to perform an {infer} task with the `elasticsearch`
|
|
service.
|
|
|
|
NOTE: If you use the E5 model through the `elasticsearch` service, the API
|
|
request will automatically download and deploy the model if it isn't downloaded
|
|
yet.
|
|
|
|
|
|
[discrete]
|
|
[[infer-service-elasticsearch-api-request]]
|
|
==== {api-request-title}
|
|
|
|
`PUT /_inference/<task_type>/<inference_id>`
|
|
|
|
[discrete]
|
|
[[infer-service-elasticsearch-api-path-params]]
|
|
==== {api-path-parms-title}
|
|
|
|
`<inference_id>`::
|
|
(Required, string)
|
|
include::inference-shared.asciidoc[tag=inference-id]
|
|
|
|
`<task_type>`::
|
|
(Required, string)
|
|
include::inference-shared.asciidoc[tag=task-type]
|
|
+
|
|
--
|
|
Available task types:
|
|
|
|
* `rerank`,
|
|
* `sparse_embedding`,
|
|
* `text_embedding`.
|
|
--
|
|
|
|
[discrete]
|
|
[[infer-service-elasticsearch-api-request-body]]
|
|
==== {api-request-body-title}
|
|
|
|
`service`::
|
|
(Required, string)
|
|
The type of service supported for the specified task type. In this case,
|
|
`elasticsearch`.
|
|
|
|
`service_settings`::
|
|
(Required, object)
|
|
include::inference-shared.asciidoc[tag=service-settings]
|
|
+
|
|
--
|
|
These settings are specific to the `elasticsearch` service.
|
|
--
|
|
|
|
`adaptive_allocations`:::
|
|
(Optional, object)
|
|
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=adaptive-allocation]
|
|
|
|
`enabled`::::
|
|
(Optional, Boolean)
|
|
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=adaptive-allocation-enabled]
|
|
|
|
`max_number_of_allocations`::::
|
|
(Optional, integer)
|
|
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=adaptive-allocation-max-number]
|
|
|
|
`min_number_of_allocations`::::
|
|
(Optional, integer)
|
|
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=adaptive-allocation-min-number]
|
|
|
|
`model_id`:::
|
|
(Required, string)
|
|
The name of the model to use for the {infer} task.
|
|
It can be the ID of either a built-in model (for example, `.multilingual-e5-small` for E5) or a text embedding model already
|
|
{ml-docs}/ml-nlp-import-model.html#ml-nlp-import-script[uploaded through Eland].
|
|
|
|
`num_allocations`:::
|
|
(Required, integer)
|
|
The total number of allocations this model is assigned across machine learning nodes.
|
|
Increasing this value generally increases the throughput.
|
|
If `adaptive_allocations` is enabled, do not set this value, because it's automatically set.
|
|
|
|
`num_threads`:::
|
|
(Required, integer)
|
|
Sets the number of threads used by each model allocation during inference. This generally increases the speed per inference request. The inference process is a compute-bound process; `threads_per_allocations` must not exceed the number of available allocated processors per node.
|
|
Must be a power of 2. Max allowed value is 32.
|
|
|
|
`task_settings`::
|
|
(Optional, object)
|
|
include::inference-shared.asciidoc[tag=task-settings]
|
|
+
|
|
.`task_settings` for the `rerank` task type
|
|
[%collapsible%closed]
|
|
=====
|
|
`return_documents`:::
|
|
(Optional, Boolean)
|
|
Returns the document instead of only the index. Defaults to `true`.
|
|
=====
|
|
|
|
|
|
[discrete]
|
|
[[inference-example-elasticsearch]]
|
|
==== E5 via the `elasticsearch` service
|
|
|
|
The following example shows how to create an {infer} endpoint called
|
|
`my-e5-model` to perform a `text_embedding` task type.
|
|
|
|
The API request below will automatically download the E5 model if it isn't
|
|
already downloaded and then deploy the model.
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT _inference/text_embedding/my-e5-model
|
|
{
|
|
"service": "elasticsearch",
|
|
"service_settings": {
|
|
"num_allocations": 1,
|
|
"num_threads": 1,
|
|
"model_id": ".multilingual-e5-small" <1>
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:TBD]
|
|
<1> The `model_id` must be the ID of one of the built-in E5 models.
|
|
Valid values are `.multilingual-e5-small` and `.multilingual-e5-small_linux-x86_64`.
|
|
For further details, refer to the {ml-docs}/ml-nlp-e5.html[E5 model documentation].
|
|
|
|
[NOTE]
|
|
====
|
|
You might see a 502 bad gateway error in the response when using the {kib} Console.
|
|
This error usually just reflects a timeout, while the model downloads in the background.
|
|
You can check the download progress in the {ml-app} UI.
|
|
If using the Python client, you can set the `timeout` parameter to a higher value.
|
|
====
|
|
|
|
[discrete]
|
|
[[inference-example-eland]]
|
|
==== Models uploaded by Eland via the elasticsearch service
|
|
|
|
The following example shows how to create an {infer} endpoint called
|
|
`my-msmarco-minilm-model` to perform a `text_embedding` task type.
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT _inference/text_embedding/my-msmarco-minilm-model <1>
|
|
{
|
|
"service": "elasticsearch",
|
|
"service_settings": {
|
|
"num_allocations": 1,
|
|
"num_threads": 1,
|
|
"model_id": "msmarco-MiniLM-L12-cos-v5" <2>
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:TBD]
|
|
<1> Provide an unique identifier for the inference endpoint. The `inference_id` must be unique and must not match the `model_id`.
|
|
<2> The `model_id` must be the ID of a text embedding model which has already been
|
|
{ml-docs}/ml-nlp-import-model.html#ml-nlp-import-script[uploaded through Eland].
|
|
|
|
[discrete]
|
|
[[inference-example-adaptive-allocation]]
|
|
==== Setting adaptive allocation for E5 via the `elasticsearch` service
|
|
|
|
The following example shows how to create an {infer} endpoint called
|
|
`my-e5-model` to perform a `text_embedding` task type and configure adaptive
|
|
allocations.
|
|
|
|
The API request below will automatically download the E5 model if it isn't
|
|
already downloaded and then deploy the model.
|
|
|
|
[source,console]
|
|
------------------------------------------------------------
|
|
PUT _inference/text_embedding/my-e5-model
|
|
{
|
|
"service": "elasticsearch",
|
|
"service_settings": {
|
|
"adaptive_allocations": {
|
|
"enabled": true,
|
|
"min_number_of_allocations": 3,
|
|
"max_number_of_allocations": 10
|
|
},
|
|
"num_threads": 1,
|
|
"model_id": ".multilingual-e5-small"
|
|
}
|
|
}
|
|
------------------------------------------------------------
|
|
// TEST[skip:TBD]
|