elasticsearch/docs/reference/ml/trained-models/apis/infer-trained-model-deployment.asciidoc
2023-01-11 12:38:35 +00:00

234 lines
5.3 KiB
Text

[role="xpack"]
[[infer-trained-model-deployment]]
= Infer trained model deployment API
[subs="attributes"]
++++
<titleabbrev>Infer trained model deployment</titleabbrev>
++++
Evaluates a trained model.
deprecated::[8.3.0,Replaced by <<infer-trained-model>>.]
[[infer-trained-model-deployment-request]]
== {api-request-title}
`POST _ml/trained_models/<model_id>/deployment/_infer`
////
[[infer-trained-model-deployment-prereq]]
== {api-prereq-title}
////
////
[[infer-trained-model-deployment-desc]]
== {api-description-title}
////
[[infer-trained-model-deployment-path-params]]
== {api-path-parms-title}
`<model_id>`::
(Required, string)
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id-or-alias]
[[infer-trained-model-deployment-query-params]]
== {api-query-parms-title}
`timeout`::
(Optional, time)
Controls the amount of time to wait for {infer} results. Defaults to 10 seconds.
[[infer-trained-model-deployment-request-body]]
== {api-request-body-title}
`docs`::
(Required, array)
An array of objects to pass to the model for inference. The objects should
contain a field matching your configured trained model input. Typically, the
field name is `text_field`.
////
[[infer-trained-model-deployment-results]]
== {api-response-body-title}
////
////
[[ml-get-trained-models-response-codes]]
== {api-response-codes-title}
////
[[infer-trained-model-deployment-example]]
== {api-examples-title}
The response depends on the task the model is trained for. If it is a text
classification task, the response is the score. For example:
[source,console]
--------------------------------------------------
POST _ml/trained_models/model2/deployment/_infer
{
"docs": [{"text_field": "The movie was awesome!!"}]
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns the predicted label and the confidence.
[source,console-result]
----
{
"predicted_value" : "POSITIVE",
"prediction_probability" : 0.9998667964092964
}
----
// NOTCONSOLE
For named entity recognition (NER) tasks, the response contains the annotated
text output and the recognized entities.
[source,console]
--------------------------------------------------
POST _ml/trained_models/model2/deployment/_infer
{
"docs": [{"text_field": "Hi my name is Josh and I live in Berlin"}]
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns in this case:
[source,console-result]
----
{
"predicted_value" : "Hi my name is [Josh](PER&Josh) and I live in [Berlin](LOC&Berlin)",
"entities" : [
{
"entity" : "Josh",
"class_name" : "PER",
"class_probability" : 0.9977303419824,
"start_pos" : 14,
"end_pos" : 18
},
{
"entity" : "Berlin",
"class_name" : "LOC",
"class_probability" : 0.9992474323902818,
"start_pos" : 33,
"end_pos" : 39
}
]
}
----
// NOTCONSOLE
Zero-shot classification tasks require extra configuration defining the class
labels. These labels are passed in the zero-shot inference config.
[source,console]
--------------------------------------------------
POST _ml/trained_models/model2/deployment/_infer
{
"docs": [
{
"text_field": "This is a very happy person"
}
],
"inference_config": {
"zero_shot_classification": {
"labels": [
"glad",
"sad",
"bad",
"rad"
],
"multi_label": false
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns the predicted label and the confidence, as well as the top
classes:
[source,console-result]
----
{
"predicted_value" : "glad",
"top_classes" : [
{
"class_name" : "glad",
"class_probability" : 0.8061155063386439,
"class_score" : 0.8061155063386439
},
{
"class_name" : "rad",
"class_probability" : 0.18218006158387956,
"class_score" : 0.18218006158387956
},
{
"class_name" : "bad",
"class_probability" : 0.006325615787634201,
"class_score" : 0.006325615787634201
},
{
"class_name" : "sad",
"class_probability" : 0.0053788162898424545,
"class_score" : 0.0053788162898424545
}
],
"prediction_probability" : 0.8061155063386439
}
----
// NOTCONSOLE
The tokenization truncate option can be overridden when calling the API:
[source,console]
--------------------------------------------------
POST _ml/trained_models/model2/deployment/_infer
{
"docs": [{"text_field": "The Amazon rainforest covers most of the Amazon basin in South America"}],
"inference_config": {
"ner": {
"tokenization": {
"bert": {
"truncate": "first"
}
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
When the input has been truncated due to the limit imposed by the model's
`max_sequence_length` the `is_truncated` field appears in the response.
[source,console-result]
----
{
"predicted_value" : "The [Amazon](LOC&Amazon) rainforest covers most of the [Amazon](LOC&Amazon) basin in [South America](LOC&South+America)",
"entities" : [
{
"entity" : "Amazon",
"class_name" : "LOC",
"class_probability" : 0.9505460915724254,
"start_pos" : 4,
"end_pos" : 10
},
{
"entity" : "Amazon",
"class_name" : "LOC",
"class_probability" : 0.9969992804311777,
"start_pos" : 41,
"end_pos" : 47
}
],
"is_truncated" : true
}
----
// NOTCONSOLE