mirror of
https://github.com/elastic/elasticsearch.git
synced 2025-04-25 07:37:19 -04:00
In this PR we implement the idea to introduce a flag, that a data stream needs to be rolloved over before the next document is indexed.
638 lines
23 KiB
Text
638 lines
23 KiB
Text
[[downsampling-manual]]
|
|
=== Run downsampling manually
|
|
++++
|
|
<titleabbrev>Run downsampling manually</titleabbrev>
|
|
++++
|
|
|
|
////
|
|
[source,console]
|
|
----
|
|
DELETE _data_stream/my-data-stream
|
|
DELETE _index_template/my-data-stream-template
|
|
DELETE _ingest/pipeline/my-timestamp-pipeline
|
|
----
|
|
// TEARDOWN
|
|
////
|
|
|
|
The recommended way to downsample a time series data stream (TSDS) is
|
|
<<downsampling-ilm,through index lifecycle management (ILM)>>. However, if
|
|
you're not using ILM, you can downsample a TSDS manually. This guide shows you
|
|
how, using typical Kubernetes cluster monitoring data.
|
|
|
|
To test out manual downsampling, follow these steps:
|
|
|
|
. Check the <<downsampling-manual-prereqs,prerequisites>>.
|
|
. <<downsampling-manual-create-index>>.
|
|
. <<downsampling-manual-ingest-data>>.
|
|
. <<downsampling-manual-run>>.
|
|
. <<downsampling-manual-view-results>>.
|
|
|
|
[discrete]
|
|
[[downsampling-manual-prereqs]]
|
|
==== Prerequisites
|
|
|
|
* Refer to the <<tsds-prereqs,TSDS prerequisites>>.
|
|
* It is not possible to downsample a data stream directly, nor
|
|
multiple indices at once. It's only possible to downsample one time series index
|
|
(TSDS backing index).
|
|
* In order to downsample an index, it needs to be read-only. For a TSDS write
|
|
index, this means it needs to be rolled over and made read-only first.
|
|
* Downsampling uses UTC timestamps.
|
|
* Downsampling needs at least one metric field to exist in the time series
|
|
index.
|
|
|
|
[discrete]
|
|
[[downsampling-manual-create-index]]
|
|
==== Create a time series data stream
|
|
|
|
First, you'll create a TSDS. For simplicity, in the time series mapping all
|
|
`time_series_metric` parameters are set to type `gauge`, but
|
|
<<time-series-metric,other values>> such as `counter` and `histogram` may also
|
|
be used. The `time_series_metric` values determine the kind of statistical
|
|
representations that are used during downsampling.
|
|
|
|
The index template includes a set of static
|
|
<<time-series-dimension,time series dimensions>>: `host`, `namespace`,
|
|
`node`, and `pod`. The time series dimensions are not changed by the
|
|
downsampling process.
|
|
|
|
[source,console]
|
|
----
|
|
PUT _index_template/my-data-stream-template
|
|
{
|
|
"index_patterns": [
|
|
"my-data-stream*"
|
|
],
|
|
"data_stream": {},
|
|
"template": {
|
|
"settings": {
|
|
"index": {
|
|
"mode": "time_series",
|
|
"routing_path": [
|
|
"kubernetes.namespace",
|
|
"kubernetes.host",
|
|
"kubernetes.node",
|
|
"kubernetes.pod"
|
|
],
|
|
"number_of_replicas": 0,
|
|
"number_of_shards": 2
|
|
}
|
|
},
|
|
"mappings": {
|
|
"properties": {
|
|
"@timestamp": {
|
|
"type": "date"
|
|
},
|
|
"kubernetes": {
|
|
"properties": {
|
|
"container": {
|
|
"properties": {
|
|
"cpu": {
|
|
"properties": {
|
|
"usage": {
|
|
"properties": {
|
|
"core": {
|
|
"properties": {
|
|
"ns": {
|
|
"type": "long"
|
|
}
|
|
}
|
|
},
|
|
"limit": {
|
|
"properties": {
|
|
"pct": {
|
|
"type": "float"
|
|
}
|
|
}
|
|
},
|
|
"nanocores": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
},
|
|
"node": {
|
|
"properties": {
|
|
"pct": {
|
|
"type": "float"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"memory": {
|
|
"properties": {
|
|
"available": {
|
|
"properties": {
|
|
"bytes": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
}
|
|
}
|
|
},
|
|
"majorpagefaults": {
|
|
"type": "long"
|
|
},
|
|
"pagefaults": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
},
|
|
"rss": {
|
|
"properties": {
|
|
"bytes": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
}
|
|
}
|
|
},
|
|
"usage": {
|
|
"properties": {
|
|
"bytes": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
},
|
|
"limit": {
|
|
"properties": {
|
|
"pct": {
|
|
"type": "float"
|
|
}
|
|
}
|
|
},
|
|
"node": {
|
|
"properties": {
|
|
"pct": {
|
|
"type": "float"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"workingset": {
|
|
"properties": {
|
|
"bytes": {
|
|
"type": "long",
|
|
"time_series_metric": "gauge"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"name": {
|
|
"type": "keyword"
|
|
},
|
|
"start_time": {
|
|
"type": "date"
|
|
}
|
|
}
|
|
},
|
|
"host": {
|
|
"type": "keyword",
|
|
"time_series_dimension": true
|
|
},
|
|
"namespace": {
|
|
"type": "keyword",
|
|
"time_series_dimension": true
|
|
},
|
|
"node": {
|
|
"type": "keyword",
|
|
"time_series_dimension": true
|
|
},
|
|
"pod": {
|
|
"type": "keyword",
|
|
"time_series_dimension": true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
|
|
[discrete]
|
|
[[downsampling-manual-ingest-data]]
|
|
==== Ingest time series data
|
|
|
|
Because time series data streams have been designed to
|
|
<<tsds-accepted-time-range,only accept recent data>>, in this example, you'll
|
|
use an ingest pipeline to time-shift the data as it gets indexed. As a result,
|
|
the indexed data will have an `@timestamp` from the last 15 minutes.
|
|
|
|
Create the pipeline with this request:
|
|
|
|
[source,console]
|
|
----
|
|
PUT _ingest/pipeline/my-timestamp-pipeline
|
|
{
|
|
"description": "Shifts the @timestamp to the last 15 minutes",
|
|
"processors": [
|
|
{
|
|
"set": {
|
|
"field": "ingest_time",
|
|
"value": "{{_ingest.timestamp}}"
|
|
}
|
|
},
|
|
{
|
|
"script": {
|
|
"lang": "painless",
|
|
"source": """
|
|
def delta = ChronoUnit.SECONDS.between(
|
|
ZonedDateTime.parse("2022-06-21T15:49:00Z"),
|
|
ZonedDateTime.parse(ctx["ingest_time"])
|
|
);
|
|
ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString();
|
|
"""
|
|
}
|
|
}
|
|
]
|
|
}
|
|
----
|
|
// TEST[continued]
|
|
|
|
Next, use a bulk API request to automatically create your TSDS and index a set
|
|
of ten documents:
|
|
|
|
[source,console]
|
|
----
|
|
PUT /my-data-stream/_bulk?refresh&pipeline=my-timestamp-pipeline
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:49:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":91153,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":463314616},"usage":{"bytes":307007078,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":585236},"rss":{"bytes":102728},"pagefaults":120901,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:45:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":124501,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":982546514},"usage":{"bytes":360035574,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1339884},"rss":{"bytes":381174},"pagefaults":178473,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:44:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":38907,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":862723768},"usage":{"bytes":379572388,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":431227},"rss":{"bytes":386580},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:44:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":86706,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":103266017,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1724908},"rss":{"bytes":105431},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:44:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":150069,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":639054643},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1786511},"rss":{"bytes":189235},"pagefaults":138172,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:42:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":82260,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":854735585},"usage":{"bytes":309798052,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":924058},"rss":{"bytes":110838},"pagefaults":259073,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:42:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":153404,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":279586406},"usage":{"bytes":214904955,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1047265},"rss":{"bytes":91914},"pagefaults":302252,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:40:20Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":125613,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":822782853},"usage":{"bytes":100475044,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2109932},"rss":{"bytes":278446},"pagefaults":74843,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:40:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":100046,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":362826547,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1986724},"rss":{"bytes":402801},"pagefaults":296495,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
{"create": {}}
|
|
{"@timestamp":"2022-06-21T15:38:30Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":40018,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":1062428344},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2294743},"rss":{"bytes":340623},"pagefaults":224530,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
|
|
----
|
|
// TEST[continued]
|
|
|
|
You can use the search API to check if the documents have been indexed
|
|
correctly:
|
|
|
|
[source,console]
|
|
----
|
|
GET /my-data-stream/_search
|
|
----
|
|
// TEST[continued]
|
|
|
|
Run the following aggregation on the data to calculate some interesting
|
|
statistics:
|
|
|
|
[source,console]
|
|
----
|
|
GET /my-data-stream/_search
|
|
{
|
|
"size": 0,
|
|
"aggs": {
|
|
"tsid": {
|
|
"terms": {
|
|
"field": "_tsid"
|
|
},
|
|
"aggs": {
|
|
"over_time": {
|
|
"date_histogram": {
|
|
"field": "@timestamp",
|
|
"fixed_interval": "1d"
|
|
},
|
|
"aggs": {
|
|
"min": {
|
|
"min": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
},
|
|
"max": {
|
|
"max": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
},
|
|
"avg": {
|
|
"avg": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
// TEST[continued]
|
|
|
|
[discrete]
|
|
[[downsampling-manual-run]]
|
|
==== Downsample the TSDS
|
|
|
|
A TSDS can't be downsampled directly. You need to downsample its backing indices
|
|
instead. You can see the backing index for your data stream by running:
|
|
|
|
[source,console]
|
|
----
|
|
GET /_data_stream/my-data-stream
|
|
----
|
|
// TEST[continued]
|
|
|
|
This returns:
|
|
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"data_streams": [
|
|
{
|
|
"name": "my-data-stream",
|
|
"timestamp_field": {
|
|
"name": "@timestamp"
|
|
},
|
|
"indices": [
|
|
{
|
|
"index_name": ".ds-my-data-stream-2023.07.26-000001", <1>
|
|
"index_uuid": "ltOJGmqgTVm4T-Buoe7Acg",
|
|
"prefer_ilm": true,
|
|
"managed_by": "Unmanaged"
|
|
}
|
|
],
|
|
"generation": 1,
|
|
"status": "GREEN",
|
|
"next_generation_managed_by": "Unmanaged",
|
|
"prefer_ilm": true,
|
|
"template": "my-data-stream-template",
|
|
"hidden": false,
|
|
"system": false,
|
|
"allow_custom_routing": false,
|
|
"replicated": false,
|
|
"rollover_on_write": false,
|
|
"time_series": {
|
|
"temporal_ranges": [
|
|
{
|
|
"start": "2023-07-26T09:26:42.000Z",
|
|
"end": "2023-07-26T13:26:42.000Z"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
]
|
|
}
|
|
----
|
|
// TESTRESPONSE[s/".ds-my-data-stream-2023.07.26-000001"/$body.data_streams.0.indices.0.index_name/]
|
|
// TESTRESPONSE[s/"ltOJGmqgTVm4T-Buoe7Acg"/$body.data_streams.0.indices.0.index_uuid/]
|
|
// TESTRESPONSE[s/"2023-07-26T09:26:42.000Z"/$body.data_streams.0.time_series.temporal_ranges.0.start/]
|
|
// TESTRESPONSE[s/"2023-07-26T13:26:42.000Z"/$body.data_streams.0.time_series.temporal_ranges.0.end/]
|
|
// TESTRESPONSE[s/"replicated": false/"replicated": false,"failure_indices":[],"failure_store":false/]
|
|
<1> The backing index for this data stream.
|
|
|
|
Before a backing index can be downsampled, the TSDS needs to be rolled over and
|
|
the old index needs to be made read-only.
|
|
|
|
Roll over the TSDS using the <<indices-rollover-index,rollover API>>:
|
|
|
|
[source,console]
|
|
----
|
|
POST /my-data-stream/_rollover/
|
|
----
|
|
// TEST[continued]
|
|
|
|
Copy the name of the `old_index` from the response. In the following steps,
|
|
replace the index name with that of your `old_index`.
|
|
|
|
The old index needs to be set to read-only mode. Run the following request:
|
|
|
|
[source,console]
|
|
----
|
|
PUT /.ds-my-data-stream-2023.07.26-000001/_block/write
|
|
----
|
|
// TEST[skip:We don't know the index name at test time]
|
|
|
|
Next, use the <<indices-downsample-data-stream,downsample API>> to downsample
|
|
the index, setting the time series interval to one hour:
|
|
|
|
[source,console]
|
|
----
|
|
POST /.ds-my-data-stream-2023.07.26-000001/_downsample/.ds-my-data-stream-2023.07.26-000001-downsample
|
|
{
|
|
"fixed_interval": "1h"
|
|
}
|
|
----
|
|
// TEST[skip:We don't know the index name at test time]
|
|
|
|
Now you can <<modify-data-streams-api,modify the data stream>>, and replace the
|
|
original index with the downsampled one:
|
|
|
|
[source,console]
|
|
----
|
|
POST _data_stream/_modify
|
|
{
|
|
"actions": [
|
|
{
|
|
"remove_backing_index": {
|
|
"data_stream": "my-data-stream",
|
|
"index": ".ds-my-data-stream-2023.07.26-000001"
|
|
}
|
|
},
|
|
{
|
|
"add_backing_index": {
|
|
"data_stream": "my-data-stream",
|
|
"index": ".ds-my-data-stream-2023.07.26-000001-downsample"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
----
|
|
// TEST[skip:We don't know the index name at test time]
|
|
|
|
You can now delete the old backing index. But be aware this will delete the
|
|
original data. Don't delete the index if you may need the original data in the
|
|
future.
|
|
|
|
[discrete]
|
|
[[downsampling-manual-view-results]]
|
|
==== View the results
|
|
|
|
Re-run the earlier search query (note that when querying downsampled indices
|
|
there are <<querying-downsampled-indices-notes,a few nuances to be aware of>>):
|
|
|
|
[source,console]
|
|
----
|
|
GET /my-data-stream/_search
|
|
----
|
|
// TEST[skip:Because we've skipped the previous steps]
|
|
|
|
The TSDS with the new downsampled backing index contains just one document. For
|
|
counters, this document would only have the last value. For gauges, the field
|
|
type is now `aggregate_metric_double`. You see the `min`, `max`, `sum`, and
|
|
`value_count` statistics based off of the original sampled metrics:
|
|
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"took": 2,
|
|
"timed_out": false,
|
|
"_shards": {
|
|
"total": 4,
|
|
"successful": 4,
|
|
"skipped": 0,
|
|
"failed": 0
|
|
},
|
|
"hits": {
|
|
"total": {
|
|
"value": 1,
|
|
"relation": "eq"
|
|
},
|
|
"max_score": 1,
|
|
"hits": [
|
|
{
|
|
"_index": ".ds-my-data-stream-2023.07.26-000001-downsample",
|
|
"_id": "0eL0wC_4-45SnTNFAAABiZHbD4A",
|
|
"_score": 1,
|
|
"_source": {
|
|
"@timestamp": "2023-07-26T11:00:00.000Z",
|
|
"_doc_count": 10,
|
|
"ingest_time": "2023-07-26T11:26:42.715Z",
|
|
"kubernetes": {
|
|
"container": {
|
|
"cpu": {
|
|
"usage": {
|
|
"core": {
|
|
"ns": 12828317850
|
|
},
|
|
"limit": {
|
|
"pct": 0.0000277905
|
|
},
|
|
"nanocores": {
|
|
"min": 38907,
|
|
"max": 153404,
|
|
"sum": 992677,
|
|
"value_count": 10
|
|
},
|
|
"node": {
|
|
"pct": 0.0000277905
|
|
}
|
|
}
|
|
},
|
|
"memory": {
|
|
"available": {
|
|
"bytes": {
|
|
"min": 279586406,
|
|
"max": 1062428344,
|
|
"sum": 7101494721,
|
|
"value_count": 10
|
|
}
|
|
},
|
|
"majorpagefaults": 0,
|
|
"pagefaults": {
|
|
"min": 74843,
|
|
"max": 302252,
|
|
"sum": 2061071,
|
|
"value_count": 10
|
|
},
|
|
"rss": {
|
|
"bytes": {
|
|
"min": 91914,
|
|
"max": 402801,
|
|
"sum": 2389770,
|
|
"value_count": 10
|
|
}
|
|
},
|
|
"usage": {
|
|
"bytes": {
|
|
"min": 100475044,
|
|
"max": 379572388,
|
|
"sum": 2668170609,
|
|
"value_count": 10
|
|
},
|
|
"limit": {
|
|
"pct": 0.00009923134
|
|
},
|
|
"node": {
|
|
"pct": 0.017700378
|
|
}
|
|
},
|
|
"workingset": {
|
|
"bytes": {
|
|
"min": 431227,
|
|
"max": 2294743,
|
|
"sum": 14230488,
|
|
"value_count": 10
|
|
}
|
|
}
|
|
},
|
|
"name": "container-name-44",
|
|
"start_time": "2021-03-30T07:59:06.000Z"
|
|
},
|
|
"host": "gke-apps-0",
|
|
"namespace": "namespace26",
|
|
"node": "gke-apps-0-0",
|
|
"pod": "gke-apps-0-0-0"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
----
|
|
// TEST[skip:Because we've skipped the previous step]
|
|
|
|
Re-run the earlier aggregation. Even though the aggregation runs on the
|
|
downsampled TSDS that only contains 1 document, it returns the same results as
|
|
the earlier aggregation on the original TSDS.
|
|
|
|
[source,console]
|
|
----
|
|
GET /my-data-stream/_search
|
|
{
|
|
"size": 0,
|
|
"aggs": {
|
|
"tsid": {
|
|
"terms": {
|
|
"field": "_tsid"
|
|
},
|
|
"aggs": {
|
|
"over_time": {
|
|
"date_histogram": {
|
|
"field": "@timestamp",
|
|
"fixed_interval": "1d"
|
|
},
|
|
"aggs": {
|
|
"min": {
|
|
"min": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
},
|
|
"max": {
|
|
"max": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
},
|
|
"avg": {
|
|
"avg": {
|
|
"field": "kubernetes.container.memory.usage.bytes"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
// TEST[skip:Because we've skipped the previous steps]
|
|
|
|
This example demonstrates how downsampling can dramatically reduce the number of
|
|
documents stored for time series data, within whatever time boundaries you
|
|
choose. It's also possible to perform downsampling on already downsampled data,
|
|
to further reduce storage and associated costs, as the time series data ages and
|
|
the data resolution becomes less critical.
|
|
|
|
The recommended way to downsample a TSDS is with ILM. To learn more, try the
|
|
<<downsampling-ilm,Run downsampling with ILM>> example.
|