elasticsearch/docs/reference/query-dsl/weighted-tokens-query.asciidoc
Kathleen DeRusso 0570b0baaa
Update text expansion/weighted tokens documentation make examples consistent with clients (#103663)
* Update text expansion docs and clarify int/float for token pruning config

* Fix formatting

* Fix tests

* Fix tests
2024-01-02 14:21:45 -05:00

122 lines
5.2 KiB
Text

[[query-dsl-weighted-tokens-query]]
=== Weighted tokens query
++++
<titleabbrev>Weighted tokens</titleabbrev>
++++
preview::[]
The weighted tokens query requires a list of token-weight pairs that are sent in with a query rather than calculated using a {nlp} model.
These token pairs are then used in a query against a <<sparse-vector,sparse vector>> or <<rank-features,rank features>> field.
Weighted tokens queries are useful when you want to use an external query expansion model, or quickly prototype changes without reindexing a new model.
[discrete]
[[weighted-tokens-query-ex-request]]
==== Example request
[source,console]
----
POST _search
{
"query": {
"weighted_tokens": {
"query_expansion_field": {
"tokens": {"2161": 0.4679, "2621": 0.307, "2782": 0.1299, "2851": 0.1056, "3088": 0.3041, "3376": 0.1038, "3467": 0.4873, "3684": 0.8958, "4380": 0.334, "4542": 0.4636, "4633": 2.2805, "4785": 1.2628, "4860": 1.0655, "5133": 1.0709, "7139": 1.0016, "7224": 0.2486, "7387": 0.0985, "7394": 0.0542, "8915": 0.369, "9156": 2.8947, "10505": 0.2771, "11464": 0.3996, "13525": 0.0088, "14178": 0.8161, "16893": 0.1376, "17851": 1.5348, "19939": 0.6012},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": false
}
}
}
}
}
----
// TEST[skip: TBD]
[discrete]
[[weighted-token-query-params]]
=== Top level parameters for `weighted_token`
`<tokens>`:::
(Required, dictionary)
A dictionary of token-weight pairs.
`pruning_config` ::::
(Optional, object)
Optional pruning configuration. If enabled, this will omit non-significant tokens from the query in order to improve query performance.
Default: Disabled.
+
--
Parameters for `<pruning_config>` are:
`tokens_freq_ratio_threshold`::
(Optional, integer)
Tokens whose frequency is more than `tokens_freq_ratio_threshold` times the average frequency of all tokens in the specified field are considered outliers and pruned.
This value must between 1 and 100.
Default: `5`.
`tokens_weight_threshold`::
(Optional, float)
Tokens whose weight is less than `tokens_weight_threshold` are considered nonsignificant and pruned.
This value must be between 0 and 1.
Default: `0.4`.
`only_score_pruned_tokens`::
(Optional, boolean)
If `true` we only input pruned tokens into scoring, and discard non-pruned tokens.
It is strongly recommended to set this to `false` for the main query, but this can be set to `true` for a rescore query to get more relevant results.
Default: `false`.
NOTE: The default values for `tokens_freq_ratio_threshold` and `tokens_weight_threshold` were chosen based on tests using ELSER that provided the most optimal results.
--
[discrete]
[[weighted-tokens-query-with-pruning-config-and-rescore-example]]
==== Example weighted tokens query with pruning configuration and rescore
The following example adds a pruning configuration to the `text_expansion` query.
The pruning configuration identifies non-significant tokens to prune from the query in order to improve query performance.
Token pruning happens at the shard level.
While this should result in the same tokens being labeled as insignificant across shards, this is not guaranteed based on the composition of each shard.
Therefore, if you are running `text_expansion` with a `pruning_config` on a multi-shard index, we strongly recommend adding a <<rescore>> function with the tokens that were originally pruned from the query.
This will help mitigate any shard-level inconsistency with pruned tokens and provide better relevance overall.
[source,console]
----
GET my-index/_search
{
"query":{
"weighted_tokens": {
"query_expansion_field": {
"tokens": {"2161": 0.4679, "2621": 0.307, "2782": 0.1299, "2851": 0.1056, "3088": 0.3041, "3376": 0.1038, "3467": 0.4873, "3684": 0.8958, "4380": 0.334, "4542": 0.4636, "4633": 2.2805, "4785": 1.2628, "4860": 1.0655, "5133": 1.0709, "7139": 1.0016, "7224": 0.2486, "7387": 0.0985, "7394": 0.0542, "8915": 0.369, "9156": 2.8947, "10505": 0.2771, "11464": 0.3996, "13525": 0.0088, "14178": 0.8161, "16893": 0.1376, "17851": 1.5348, "19939": 0.6012},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": false
}
}
}
},
"rescore": {
"window_size": 100,
"query": {
"rescore_query": {
"weighted_tokens": {
"query_expansion_field": {
"tokens": {"2161": 0.4679, "2621": 0.307, "2782": 0.1299, "2851": 0.1056, "3088": 0.3041, "3376": 0.1038, "3467": 0.4873, "3684": 0.8958, "4380": 0.334, "4542": 0.4636, "4633": 2.2805, "4785": 1.2628, "4860": 1.0655, "5133": 1.0709, "7139": 1.0016, "7224": 0.2486, "7387": 0.0985, "7394": 0.0542, "8915": 0.369, "9156": 2.8947, "10505": 0.2771, "11464": 0.3996, "13525": 0.0088, "14178": 0.8161, "16893": 0.1376, "17851": 1.5348, "19939": 0.6012},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": true
}
}
}
}
}
}
}
----
//TEST[skip: TBD]