elasticsearch/docs/reference/aggregations/pipeline/bucket-correlation-aggregation.asciidoc
Benjamin Trent 30cf4dc8be
[ML] adding new KS test pipeline aggregation (#73334)
This adds a new pipeline aggregation for calculating Kolmogorov–Smirnov test for a given sample and buckets path.

For now, the buckets path resolution needs to be `_count`. But, this may be relaxed in the future. 

It accepts a parameter `fractions` that indicates the distribution of documents from some other pre-calculated sample. 

This particular version of the K-S test is Two-sample, meaning, it calculates if the `fractions` and the distribution of `_count` values in the buckets_path are taken from the same distribution.

This in combination with the hypothesis alternatives (`less`, `greater`, `two_sided`) and sampling logic (`upper_tail`, `lower_tail`, `uniform`) allow for flexibility and usefulness when comparing two samples and determining the likelihood of them being from the same overall distribution.

Usage:

```
POST correlate_latency/_search?size=0&filter_path=aggregations
{
  "aggs": {
    "buckets": {
      "terms": { <1>
        "field": "version",
        "size": 2
      },
      "aggs": {
        "latency_ranges": {
          "range": { <2>
            "field": "latency",
            "ranges": [
              { "to": 0.0 },
              { "from": 0, "to": 105 },
              { "from": 105, "to": 225 },
              { "from": 225, "to": 445 },
              { "from": 445, "to": 665 },
              { "from": 665, "to": 885 },
              { "from": 885, "to": 1115 },
              { "from": 1115, "to": 1335 },
              { "from": 1335, "to": 1555 },
              { "from": 1555, "to": 1775 },
              { "from": 1775 }
            ]
          }
        },
        "ks_test": { <3>
          "bucket_count_ks_test": {
            "buckets_path": "latency_ranges>_count",
            "alternative": ["less", "greater", "two_sided"]
          }
        }
      }
    }
  }
}
```
2021-06-04 10:04:41 -04:00

319 lines
8.9 KiB
Text

[role="xpack"]
[testenv="basic"]
[[search-aggregations-bucket-correlation-aggregation]]
=== Bucket correlation aggregation
++++
<titleabbrev>Bucket correlation aggregation</titleabbrev>
++++
experimental::[]
A sibling pipeline aggregation which executes a correlation function on the
configured sibling multi-bucket aggregation.
[[bucket-correlation-agg-syntax]]
==== Parameters
`buckets_path`::
(Required, string)
Path to the buckets that contain one set of values to correlate.
For syntax, see <<buckets-path-syntax>>.
`function`::
(Required, object)
The correlation function to execute.
+
.Properties of `function`
[%collapsible%open]
====
`count_correlation`:::
(Required^*^, object)
The configuration to calculate a count correlation. This function is designed for
determining the correlation of a term value and a given metric. Consequently, it
needs to meet the following requirements.
* The `buckets_path` must point to a `_count` metric.
* The total count of all the `bucket_path` count values must be less than or equal to `indicator.doc_count`.
* When utilizing this function, an initial calculation to gather the required `indicator` values is required.
.Properties of `count_correlation`
[%collapsible%open]
=====
`indicator`:::
(Required, object)
The indicator with which to correlate the configured `bucket_path` values.
.Properties of `indicator`
[%collapsible%open]
=====
`expectations`:::
(Required, array)
An array of numbers with which to correlate the configured `bucket_path` values. The length of this value must always equal
the number of buckets returned by the `bucket_path`.
`fractions`:::
(Optional, array)
An array of fractions to use when averaging and calculating variance. This should be used if the pre-calculated data and the
`buckets_path` have known gaps. The length of `fractions`, if provided, must equal `expectations`.
`doc_count`:::
(Required, integer)
The total number of documents that initially created the `expectations`. It's required to be greater than or equal to the sum
of all values in the `buckets_path` as this is the originating superset of data to which the term values are correlated.
=====
=====
====
==== Syntax
A `bucket_correlation` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"bucket_correlation": {
"buckets_path": "range_values>_count", <1>
"function": {
"count_correlation": { <2>
"expectations": [...],
"doc_count": 10000
}
}
}
}
--------------------------------------------------
// NOTCONSOLE
<1> The buckets containing the values to correlate against.
<2> The correlation function definition.
[[bucket-correlation-agg-example]]
==== Example
The following snippet correlates the individual terms in the field `version` with the `latency` metric. Not shown
is the pre-calculation of the `latency` indicator values, which was done utilizing the
<<search-aggregations-metrics-percentile-aggregation,percentiles>> aggregation.
This example is only using the 10s percentiles.
[source,console]
-------------------------------------------------
POST correlate_latency/_search?size=0&filter_path=aggregations
{
"aggs": {
"buckets": {
"terms": { <1>
"field": "version",
"size": 2
},
"aggs": {
"latency_ranges": {
"range": { <2>
"field": "latency",
"ranges": [
{ "to": 0.0 },
{ "from": 0, "to": 105 },
{ "from": 105, "to": 225 },
{ "from": 225, "to": 445 },
{ "from": 445, "to": 665 },
{ "from": 665, "to": 885 },
{ "from": 885, "to": 1115 },
{ "from": 1115, "to": 1335 },
{ "from": 1335, "to": 1555 },
{ "from": 1555, "to": 1775 },
{ "from": 1775 }
]
}
},
"bucket_correlation": { <3>
"bucket_correlation": {
"buckets_path": "latency_ranges>_count",
"function": {
"count_correlation": {
"indicator": {
"expectations": [0, 52.5, 165, 335, 555, 775, 1000, 1225, 1445, 1665, 1775],
"doc_count": 200
}
}
}
}
}
}
}
}
}
-------------------------------------------------
// TEST[setup:correlate_latency]
<1> The term buckets containing a range aggregation and the bucket correlation aggregation. Both are utilized to calculate
the correlation of the term values with the latency.
<2> The range aggregation on the latency field. The ranges were created referencing the percentiles of the latency field.
<3> The bucket correlation aggregation that calculates the correlation of the number of term values within each range
and the previously calculated indicator values.
And the following may be the response:
[source,console-result]
----
{
"aggregations" : {
"buckets" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1.0",
"doc_count" : 100,
"latency_ranges" : {
"buckets" : [
{
"key" : "*-0.0",
"to" : 0.0,
"doc_count" : 0
},
{
"key" : "0.0-105.0",
"from" : 0.0,
"to" : 105.0,
"doc_count" : 1
},
{
"key" : "105.0-225.0",
"from" : 105.0,
"to" : 225.0,
"doc_count" : 9
},
{
"key" : "225.0-445.0",
"from" : 225.0,
"to" : 445.0,
"doc_count" : 0
},
{
"key" : "445.0-665.0",
"from" : 445.0,
"to" : 665.0,
"doc_count" : 0
},
{
"key" : "665.0-885.0",
"from" : 665.0,
"to" : 885.0,
"doc_count" : 0
},
{
"key" : "885.0-1115.0",
"from" : 885.0,
"to" : 1115.0,
"doc_count" : 10
},
{
"key" : "1115.0-1335.0",
"from" : 1115.0,
"to" : 1335.0,
"doc_count" : 20
},
{
"key" : "1335.0-1555.0",
"from" : 1335.0,
"to" : 1555.0,
"doc_count" : 20
},
{
"key" : "1555.0-1775.0",
"from" : 1555.0,
"to" : 1775.0,
"doc_count" : 20
},
{
"key" : "1775.0-*",
"from" : 1775.0,
"doc_count" : 20
}
]
},
"bucket_correlation" : {
"value" : 0.8402398981360937
}
},
{
"key" : "2.0",
"doc_count" : 100,
"latency_ranges" : {
"buckets" : [
{
"key" : "*-0.0",
"to" : 0.0,
"doc_count" : 0
},
{
"key" : "0.0-105.0",
"from" : 0.0,
"to" : 105.0,
"doc_count" : 19
},
{
"key" : "105.0-225.0",
"from" : 105.0,
"to" : 225.0,
"doc_count" : 11
},
{
"key" : "225.0-445.0",
"from" : 225.0,
"to" : 445.0,
"doc_count" : 20
},
{
"key" : "445.0-665.0",
"from" : 445.0,
"to" : 665.0,
"doc_count" : 20
},
{
"key" : "665.0-885.0",
"from" : 665.0,
"to" : 885.0,
"doc_count" : 20
},
{
"key" : "885.0-1115.0",
"from" : 885.0,
"to" : 1115.0,
"doc_count" : 10
},
{
"key" : "1115.0-1335.0",
"from" : 1115.0,
"to" : 1335.0,
"doc_count" : 0
},
{
"key" : "1335.0-1555.0",
"from" : 1335.0,
"to" : 1555.0,
"doc_count" : 0
},
{
"key" : "1555.0-1775.0",
"from" : 1555.0,
"to" : 1775.0,
"doc_count" : 0
},
{
"key" : "1775.0-*",
"from" : 1775.0,
"doc_count" : 0
}
]
},
"bucket_correlation" : {
"value" : -0.5759855613334943
}
}
]
}
}
}
----