elasticsearch/docs/reference/tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc
Mark J. Hoy 80a22ec046
[Inference API] Add Docs for Mistral Embedding Support for the Inference API (#109319)
* Initial docs for put-inference for Mistral

* adds mistral embeddings to tutorial; add changelog

* update mistral text and dimensions

* fix mistral spelling error

* fix azure AI studio; fix Mistral label

* fix auto-formatted items

* change pipeline button back to azure openai

* put proper Azure AI Studio include in

* fix missing azure-openai; fix huggingface hidden

* fix mistral tab for reindex

* re-add Mistral service settings to put inference
2024-06-05 11:23:29 -04:00

166 lines
4.3 KiB
Text

////
[source,console]
----
DELETE _ingest/pipeline/*_embeddings
----
// TEST
// TEARDOWN
////
// tag::cohere[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/cohere_embeddings
{
"processors": [
{
"inference": {
"model_id": "cohere_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::cohere[]
// tag::hugging-face[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/hugging_face_embeddings
{
"processors": [
{
"inference": {
"model_id": "hugging_face_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::hugging-face[]
// tag::openai[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/openai_embeddings
{
"processors": [
{
"inference": {
"model_id": "openai_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::openai[]
// tag::azure-openai[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/azure_openai_embeddings
{
"processors": [
{
"inference": {
"model_id": "azure_openai_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::azure-openai[]
// tag::azure-ai-studio[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/azure_ai_studio_embeddings
{
"processors": [
{
"inference": {
"model_id": "azure_ai_studio_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::azure-ai-studio[]
// tag::mistral[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/mistral_embeddings
{
"processors": [
{
"inference": {
"model_id": "mistral_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::mistral[]