elasticsearch/docs/reference/esql/processing-commands/grok.asciidoc
Abdon Pijpelink 284f81873f
[DOCS] Expand ES|QL DISSECT and GROK documentation (#101225)
* Add 'Process data with DISSECT and GROK' page

* Expand DISSECT docs

* More DISSECT and GROK enhancements

* Improve examples

* Fix CSV tests

* Review feedback

* Reword
2023-10-25 13:19:17 +02:00

67 lines
1.6 KiB
Text

[discrete]
[[esql-grok]]
=== `GROK`
**Syntax**
[source,txt]
----
GROK input "pattern"
----
*Parameters*
`input`::
The column that contains the string you want to structure. If the column has
multiple values, `GROK` will process each value.
`pattern`::
A grok pattern.
*Description*
`GROK` enables you to <<esql-process-data-with-dissect-and-grok,extract
structured data out of a string>>. `GROK` matches the string against patterns,
based on regular expressions, and extracts the specified patterns as columns.
Refer to <<esql-process-data-with-grok>> for the syntax of grok patterns.
*Examples*
// tag::examples[]
The following example parses a string that contains a timestamp, an IP address,
an email address, and a number:
[source.merge.styled,esql]
----
include::{esql-specs}/docs.csv-spec[tag=basicGrok]
----
[%header.monospaced.styled,format=dsv,separator=|]
|===
include::{esql-specs}/docs.csv-spec[tag=basicGrok-result]
|===
By default, `GROK` outputs keyword string columns. `int` and `float` types can
be converted by appending `:type` to the semantics in the pattern. For example
`{NUMBER:num:int}`:
[source.merge.styled,esql]
----
include::{esql-specs}/docs.csv-spec[tag=grokWithConversionSuffix]
----
[%header.monospaced.styled,format=dsv,separator=|]
|===
include::{esql-specs}/docs.csv-spec[tag=grokWithConversionSuffix-result]
|===
For other type conversions, use <<esql-type-conversion-functions>>:
[source.merge.styled,esql]
----
include::{esql-specs}/docs.csv-spec[tag=grokWithToDatetime]
----
[%header.monospaced.styled,format=dsv,separator=|]
|===
include::{esql-specs}/docs.csv-spec[tag=grokWithToDatetime-result]
|===
// end::examples[]