elasticsearch/docs/reference/ml/df-analytics/apis/ml-df-analytics-apis.asciidoc
Benjamin Trent 2279cafb4e
[ML] adding new _preview endpoint for data frame analytics (#69453)
This commit adds a new `_preview` endpoint for data frame analytics. 

This allows users to see the data on which their model will be trained. This is especially useful 
in the arrival of custom feature processors.

The API design is a similar to datafeed `_preview` and data frame analytics `_explain`.
2021-03-01 12:25:50 -05:00

36 lines
1.2 KiB
Text

[role="xpack"]
[testenv="platinum"]
[[ml-df-analytics-apis]]
= {ml-cap} {dfanalytics} APIs
You can use the following APIs to perform {ml} {dfanalytics} activities.
* <<preview-dfanalytics,Preview {dfanalytics}>>
* <<put-dfanalytics,Create {dfanalytics-jobs}>>
* <<update-dfanalytics,Update {dfanalytics-jobs}>>
* <<delete-dfanalytics,Delete {dfanalytics-jobs}>>
* <<get-dfanalytics,Get {dfanalytics-jobs} info>>
* <<get-dfanalytics-stats,Get {dfanalytics-jobs} statistics>>
* <<start-dfanalytics,Start {dfanalytics-jobs}>>
* <<stop-dfanalytics,Stop {dfanalytics-jobs}>>
* <<evaluate-dfanalytics,Evaluate {dfanalytics}>>
* <<explain-dfanalytics,Explain {dfanalytics}>>
You can use the following APIs to perform {infer} operations.
* <<put-trained-models>>
* <<get-trained-models>>
* <<get-trained-models-stats>>
* <<delete-trained-models>>
* <<put-trained-models-aliases>>
* <<delete-trained-models-aliases>>
You can deploy a trained model to make predictions in an ingest pipeline or in
an aggregation. Refer to the following documentation to learn more.
* <<inference-processor,{infer-cap} processor>>
* <<search-aggregations-pipeline-inference-bucket-aggregation,{infer-cap} bucket aggregation>>
See also <<ml-apis>>.