elasticsearch/docs/reference/ingest/processors/inference.asciidoc

656 lines
18 KiB
Text

[role="xpack"]
[[inference-processor]]
=== {infer-cap} processor
++++
<titleabbrev>{infer-cap}</titleabbrev>
++++
Uses a pre-trained {dfanalytics} model or a model deployed for natural
language processing tasks to infer against the data that is being
ingested in the pipeline.
[[inference-options]]
.{infer-cap} Options
[options="header"]
|======
| Name | Required | Default | Description
| `model_id` . | yes | - | (String) The ID or alias for the trained model, or the ID of the deployment.
| `input_output` | no | - | (List) Input fields for {infer} and output (destination) fields for the {infer} results. This option is incompatible with the `target_field` and `field_map` options.
| `target_field` | no | `ml.inference.<processor_tag>` | (String) Field added to incoming documents to contain results objects.
| `field_map` | no | If defined the model's default field map | (Object) Maps the document field names to the known field names of the model. This mapping takes precedence over any default mappings provided in the model configuration.
| `inference_config` | no | The default settings defined in the model | (Object) Contains the inference type and its options.
| `ignore_missing` | no | `false` | (Boolean) If `true` and any of the input fields defined in `input_ouput` are missing then those missing fields are quietly ignored, otherwise a missing field causes a failure. Only applies when using `input_output` configurations to explicitly list the input fields.
include::common-options.asciidoc[]
|======
[IMPORTANT]
==================================================
* You cannot use the `input_output` field with the `target_field` and
`field_map` fields. For NLP models, use the `input_output` option. For
{dfanalytics} models, use the `target_field` and `field_map` option.
* Each {infer} input field must be single strings, not arrays of strings.
* The `input_field` is processed as is and ignores any <<mapping,index mapping>>'s <<analysis,analyzers>> at time of {infer} run.
==================================================
[discrete]
[[inference-input-output-example]]
==== Configuring input and output fields
Select the `content` field for inference and write the result to
`content_embedding`.
IMPORTANT: If the specified `output_field` already exists in the ingest document, it won't be overwritten.
The {infer} results will be appended to the existing fields within `output_field`, which could lead to duplicate fields and potential errors.
To avoid this, use an unique `output_field` field name that does not clash with any existing fields.
[source,js]
--------------------------------------------------
{
"inference": {
"model_id": "model_deployment_for_inference",
"input_output": [
{
"input_field": "content",
"output_field": "content_embedding"
}
]
}
}
--------------------------------------------------
// NOTCONSOLE
==== Configuring multiple inputs
The `content` and `title` fields will be read from the incoming document and
sent to the model for the inference. The inference output is written to
`content_embedding` and `title_embedding` respectively.
[source,js]
--------------------------------------------------
{
"inference": {
"model_id": "model_deployment_for_inference",
"input_output": [
{
"input_field": "content",
"output_field": "content_embedding"
},
{
"input_field": "title",
"output_field": "title_embedding"
}
]
}
}
--------------------------------------------------
// NOTCONSOLE
Selecting the input fields with `input_output` is incompatible with
the `target_field` and `field_map` options.
{dfanalytics-cap} models must use the `target_field` to specify the root
location results are written to and optionally a `field_map` to map field names
in the input document to the model input fields.
[source,js]
--------------------------------------------------
{
"inference": {
"model_id": "model_deployment_for_inference",
"target_field": "FlightDelayMin_prediction_infer",
"field_map": {
"your_field": "my_field"
},
"inference_config": { "regression": {} }
}
}
--------------------------------------------------
// NOTCONSOLE
[discrete]
[[inference-processor-classification-opt]]
==== {classification-cap} configuration options
Classification configuration for inference.
`num_top_classes`::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes]
`num_top_feature_importance_values`::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-feature-importance-values]
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`top_classes_results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-top-classes-results-field]
`prediction_field_type`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-prediction-field-type]
[discrete]
[[inference-processor-fill-mask-opt]]
==== Fill mask configuration options
`num_top_classes`::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes]
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-ner-opt]]
==== NER configuration options
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-regression-opt]]
==== {regression-cap} configuration options
Regression configuration for inference.
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`num_top_feature_importance_values`::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-regression-num-top-feature-importance-values]
[discrete]
[[inference-processor-text-classification-opt]]
==== Text classification configuration options
`classification_labels`::
(Optional, string) An array of classification labels.
`num_top_classes`::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes]
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`span`::::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-span]
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`span`::::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-span]
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-text-embedding-opt]]
==== Text embedding configuration options
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-text-expansion-opt]]
==== Text expansion configuration options
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`span`::::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-span]
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`span`::::
(Optional, integer)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-span]
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-text-similarity-opt]]
==== Text similarity configuration options
`text_similarity`:::
(Object, optional)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-text-similarity]
+
.Properties of text_similarity inference
[%collapsible%open]
=====
`span_score_combination_function`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-text-similarity-span-score-func]
`tokenization`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
Refer to <<tokenization-properties>> to review the properties of the
`tokenization` object.
=====
[discrete]
[[inference-processor-zero-shot-opt]]
==== Zero shot classification configuration options
`labels`::
(Optional, array)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-zero-shot-classification-labels]
`multi_label`::
(Optional, boolean)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-zero-shot-classification-multi-label]
`results_field`::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field-processor]
`tokenization`::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization]
+
.Properties of tokenization
[%collapsible%open]
=====
`bert`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-bert]
+
.Properties of bert
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`roberta`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-roberta]
+
.Properties of roberta
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
`mpnet`::::
(Optional, object)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-mpnet]
+
.Properties of mpnet
[%collapsible%open]
=======
`truncate`::::
(Optional, string)
include::{es-ref-dir}/ml/ml-shared.asciidoc[tag=inference-config-nlp-tokenization-truncate]
=======
=====
[discrete]
[[inference-processor-config-example]]
==== {infer-cap} processor examples
[source,js]
--------------------------------------------------
"inference":{
"model_id": "my_model_id",
"field_map": {
"original_fieldname": "expected_fieldname"
},
"inference_config": {
"regression": {
"results_field": "my_regression"
}
}
}
--------------------------------------------------
// NOTCONSOLE
This configuration specifies a `regression` inference and the results are
written to the `my_regression` field contained in the `target_field` results
object. The `field_map` configuration maps the field `original_fieldname` from
the source document to the field expected by the model.
[source,js]
--------------------------------------------------
"inference":{
"model_id":"my_model_id"
"inference_config": {
"classification": {
"num_top_classes": 2,
"results_field": "prediction",
"top_classes_results_field": "probabilities"
}
}
}
--------------------------------------------------
// NOTCONSOLE
This configuration specifies a `classification` inference. The number of
categories for which the predicted probabilities are reported is 2
(`num_top_classes`). The result is written to the `prediction` field and the top
classes to the `probabilities` field. Both fields are contained in the
`target_field` results object.
For an example that uses {nlp} trained models, refer to
{ml-docs}/ml-nlp-inference.html[Add NLP inference to ingest pipelines].
[discrete]
[[inference-processor-feature-importance]]
==== {feat-imp-cap} object mapping
To get the full benefit of aggregating and searching for
{ml-docs}/ml-feature-importance.html[{feat-imp}], update your index mapping of
the {feat-imp} result field as you can see below:
[source,js]
--------------------------------------------------
"ml.inference.feature_importance": {
"type": "nested",
"dynamic": true,
"properties": {
"feature_name": {
"type": "keyword"
},
"importance": {
"type": "double"
}
}
}
--------------------------------------------------
// NOTCONSOLE
The mapping field name for {feat-imp} (in the example above, it is
`ml.inference.feature_importance`) is compounded as follows:
`<ml.inference.target_field>`.`<inference.tag>`.`feature_importance`
* `<ml.inference.target_field>`: defaults to `ml.inference`.
* `<inference.tag>`: if is not provided in the processor definition, then it is
not part of the field path.
For example, if you provide a tag `foo` in the definition as you can see below:
[source,js]
--------------------------------------------------
{
"tag": "foo",
...
}
--------------------------------------------------
// NOTCONSOLE
Then, the {feat-imp} value is written to the
`ml.inference.foo.feature_importance` field.
You can also specify the target field as follows:
[source,js]
--------------------------------------------------
{
"tag": "foo",
"target_field": "my_field"
}
--------------------------------------------------
// NOTCONSOLE
In this case, {feat-imp} is exposed in the
`my_field.foo.feature_importance` field.