elasticsearch/docs/reference/inference/service-google-vertex-ai.asciidoc
István Zoltán Szabó f9c57ad32f
[DOCS] Documents configurable chunking (#115300) (#115674)
Co-authored-by: David Kyle <david.kyle@elastic.co>
2024-10-26 03:01:50 +11:00

155 lines
4.3 KiB
Text

[[infer-service-google-vertex-ai]]
=== Google Vertex AI {infer} service
Creates an {infer} endpoint to perform an {infer} task with the `googlevertexai` service.
[discrete]
[[infer-service-google-vertex-ai-api-request]]
==== {api-request-title}
`PUT /_inference/<task_type>/<inference_id>`
[discrete]
[[infer-service-google-vertex-ai-path-params]]
==== {api-path-parms-title}
`<inference_id>`::
(Required, string)
include::inference-shared.asciidoc[tag=inference-id]
`<task_type>`::
(Required, string)
include::inference-shared.asciidoc[tag=task-type]
+
--
Available task types:
* `rerank`
* `text_embedding`.
--
[discrete]
[[infer-service-google-vertex-ai-api-request-body]]
==== {api-request-body-title}
`chunking_settings`::
(Optional, object)
include::inference-shared.asciidoc[tag=chunking-settings]
`max_chunking_size`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-max-chunking-size]
`overlap`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-overlap]
`sentence_overlap`:::
(Optional, integer)
include::inference-shared.asciidoc[tag=chunking-settings-sentence-overlap]
`strategy`:::
(Optional, string)
include::inference-shared.asciidoc[tag=chunking-settings-strategy]
`service`::
(Required, string)
The type of service supported for the specified task type. In this case,
`googlevertexai`.
`service_settings`::
(Required, object)
include::inference-shared.asciidoc[tag=service-settings]
+
--
These settings are specific to the `googlevertexai` service.
--
`service_account_json`:::
(Required, string)
A valid service account in json format for the Google Vertex AI API.
`model_id`:::
(Required, string)
The name of the model to use for the {infer} task.
You can find the supported models at https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api[Text embeddings API].
`location`:::
(Required, string)
The name of the location to use for the {infer} task.
You find the supported locations at https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations[Generative AI on Vertex AI locations].
`project_id`:::
(Required, string)
The name of the project to use for the {infer} task.
`rate_limit`:::
(Optional, object)
By default, the `googlevertexai` service sets the number of requests allowed per minute to `30.000`.
This helps to minimize the number of rate limit errors returned from Google Vertex AI.
To modify this, set the `requests_per_minute` setting of this object in your service settings:
+
--
include::inference-shared.asciidoc[tag=request-per-minute-example]
More information about the rate limits for Google Vertex AI can be found in the https://cloud.google.com/vertex-ai/docs/quotas[Google Vertex AI Quotas docs].
--
`task_settings`::
(Optional, object)
include::inference-shared.asciidoc[tag=task-settings]
+
.`task_settings` for the `rerank` task type
[%collapsible%closed]
=====
`top_n`:::
(optional, boolean)
Specifies the number of the top n documents, which should be returned.
=====
+
.`task_settings` for the `text_embedding` task type
[%collapsible%closed]
=====
`auto_truncate`:::
(optional, boolean)
Specifies if the API truncates inputs longer than the maximum token length automatically.
=====
[discrete]
[[inference-example-google-vertex-ai]]
==== Google Vertex AI service example
The following example shows how to create an {infer} endpoint called
`google_vertex_ai_embeddings` to perform a `text_embedding` task type.
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/google_vertex_ai_embeddings
{
"service": "googlevertexai",
"service_settings": {
"service_account_json": "<service_account_json>",
"model_id": "<model_id>",
"location": "<location>",
"project_id": "<project_id>"
}
}
------------------------------------------------------------
// TEST[skip:TBD]
The next example shows how to create an {infer} endpoint called
`google_vertex_ai_rerank` to perform a `rerank` task type.
[source,console]
------------------------------------------------------------
PUT _inference/rerank/google_vertex_ai_rerank
{
"service": "googlevertexai",
"service_settings": {
"service_account_json": "<service_account_json>",
"project_id": "<project_id>"
}
}
------------------------------------------------------------
// TEST[skip:TBD]