elasticsearch/docs/reference/tab-widgets/inference-api/infer-api-task.asciidoc
2024-03-26 08:20:34 +01:00

66 lines
No EOL
2.4 KiB
Text

// tag::cohere[]
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/cohere_embeddings <1>
{
"service": "cohere",
"service_settings": {
"api_key": "<api_key>", <2>
"model_id": "embed-english-v3.0", <3>
"embedding_type": "byte"
}
}
------------------------------------------------------------
// TEST[skip:TBD]
<1> The task type is `text_embedding` in the path and the `inference_id` which
is the unique identifier of the {infer} endpoint is `cohere_embeddings`.
<2> The API key of your Cohere account. You can find your API keys in your
Cohere dashboard under the
https://dashboard.cohere.com/api-keys[API keys section]. You need to provide
your API key only once. The <<get-inference-api>> does not return your API
key.
<3> The name of the embedding model to use. You can find the list of Cohere
embedding models https://docs.cohere.com/reference/embed[here].
NOTE: When using this model the recommended similarity measure to use in the
`dense_vector` field mapping is `dot_product`. In the case of Cohere models, the
embeddings are normalized to unit length in which case the `dot_product` and
the `cosine` measures are equivalent.
// end::cohere[]
// tag::openai[]
[source,console]
------------------------------------------------------------
PUT _inference/text_embedding/openai_embeddings <1>
{
"service": "openai",
"service_settings": {
"api_key": "<api_key>", <2>
"model_id": "text-embedding-ada-002" <3>
}
}
------------------------------------------------------------
// TEST[skip:TBD]
<1> The task type is `text_embedding` in the path and the `inference_id` which
is the unique identifier of the {infer} endpoint is `openai_embeddings`.
<2> The API key of your OpenAI account. You can find your OpenAI API keys in
your OpenAI account under the
https://platform.openai.com/api-keys[API keys section]. You need to provide
your API key only once. The <<get-inference-api>> does not return your API
key.
<3> The name of the embedding model to use. You can find the list of OpenAI
embedding models
https://platform.openai.com/docs/guides/embeddings/embedding-models[here].
NOTE: When using this model the recommended similarity measure to use in the
`dense_vector` field mapping is `dot_product`. In the case of OpenAI models, the
embeddings are normalized to unit length in which case the `dot_product` and
the `cosine` measures are equivalent.
// end::openai[]