elasticsearch/docs/reference/tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc
2024-09-14 02:01:16 +10:00

270 lines
7.3 KiB
Text

////
[source,console]
----
DELETE _ingest/pipeline/*_embeddings_pipeline
----
// TEST
// TEARDOWN
////
// tag::cohere[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/cohere_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "cohere_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::cohere[]
// tag::elser[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/elser_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "elser_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::elser[]
// tag::hugging-face[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/hugging_face_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "hugging_face_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::hugging-face[]
// tag::openai[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/openai_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "openai_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::openai[]
// tag::azure-openai[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/azure_openai_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "azure_openai_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::azure-openai[]
// tag::azure-ai-studio[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/azure_ai_studio_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "azure_ai_studio_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::azure-ai-studio[]
// tag::google-vertex-ai[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/google_vertex_ai_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "google_vertex_ai_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::google-vertex-ai[]
// tag::mistral[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/mistral_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "mistral_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::mistral[]
// tag::amazon-bedrock[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/amazon_bedrock_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "amazon_bedrock_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::amazon-bedrock[]
// tag::alibabacloud-ai-search[]
[source,console]
--------------------------------------------------
PUT _ingest/pipeline/alibabacloud_ai_search_embeddings_pipeline
{
"processors": [
{
"inference": {
"model_id": "alibabacloud_ai_search_embeddings", <1>
"input_output": { <2>
"input_field": "content",
"output_field": "content_embedding"
}
}
}
]
}
--------------------------------------------------
<1> The name of the inference endpoint you created by using the
<<put-inference-api>>, it's referred to as `inference_id` in that step.
<2> Configuration object that defines the `input_field` for the {infer} process
and the `output_field` that will contain the {infer} results.
// end::alibabacloud-ai-search[]