elasticsearch/docs/reference/ml/anomaly-detection/apis/get-ml-info.asciidoc
David Roberts e4ce39845b
[ML] Add total ML memory to ML info (#65195)
This change adds an extra piece of information,
limits.total_ml_memory, to the ML info response.
This returns the total amount of memory that ML
is permitted to use for native processes across
all ML nodes in the cluster.  Some of this may
already be in use; the value returned is total,
not available ML memory.
2020-11-18 15:06:21 +00:00

128 lines
3.4 KiB
Text

[role="xpack"]
[testenv="platinum"]
[[get-ml-info]]
= Get machine learning info API
[subs="attributes"]
++++
<titleabbrev>Get {ml} info</titleabbrev>
++++
Returns defaults and limits used by machine learning.
[[get-ml-info-request]]
== {api-request-title}
`GET _ml/info`
[[get-ml-info-prereqs]]
== {api-prereq-title}
* If the {es} {security-features} are enabled, you must have `monitor_ml`,
`monitor`, `manage_ml`, or `manage` cluster privileges to use this API. The
`machine_learning_admin` and `machine_learning_user` roles provide these
privileges. See <<security-privileges>>, <<built-in-roles>> and
{ml-docs-setup-privileges}.
[[get-ml-info-desc]]
== {api-description-title}
This endpoint is designed to be used by a user interface that needs to fully
understand machine learning configurations where some options are not specified,
meaning that the defaults should be used. This endpoint may be used to find out
what those defaults are. It also provides information about the maximum size
of {ml} jobs that could run in the current cluster configuration.
[[get-ml-info-example]]
== {api-examples-title}
The endpoint takes no arguments:
[source,console]
--------------------------------------------------
GET _ml/info
--------------------------------------------------
// TEST
This is a possible response:
[source,console-result]
----
{
"defaults" : {
"anomaly_detectors" : {
"categorization_analyzer" : {
"tokenizer" : "ml_classic",
"filter" : [
{
"type" : "stop",
"stopwords" : [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
"Mon",
"Tue",
"Wed",
"Thu",
"Fri",
"Sat",
"Sun",
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
"GMT",
"UTC"
]
}
]
},
"model_memory_limit" : "1gb",
"categorization_examples_limit" : 4,
"model_snapshot_retention_days" : 10,
"daily_model_snapshot_retention_after_days" : 1
},
"datafeeds" : {
"scroll_size" : 1000
}
},
"upgrade_mode": false,
"native_code" : {
"version": "7.0.0",
"build_hash": "99a07c016d5a73"
},
"limits" : {
"effective_max_model_memory_limit": "28961mb",
"total_ml_memory": "86883mb"
}
}
----
// TESTRESPONSE[s/"upgrade_mode": false/"upgrade_mode": $body.upgrade_mode/]
// TESTRESPONSE[s/"version": "7.0.0",/"version": "$body.native_code.version",/]
// TESTRESPONSE[s/"build_hash": "99a07c016d5a73"/"build_hash": "$body.native_code.build_hash"/]
// TESTRESPONSE[s/"effective_max_model_memory_limit": "28961mb"/"effective_max_model_memory_limit": "$body.limits.effective_max_model_memory_limit"/]
// TESTRESPONSE[s/"total_ml_memory": "86883mb"/"total_ml_memory": "$body.limits.total_ml_memory"/]