This commit is contained in:
Akilesh Kannan 2025-04-20 16:08:12 +00:00 committed by GitHub
commit 3b9f5e83b0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 596 additions and 620 deletions

View file

@ -97,6 +97,7 @@ ${PRJ_DIR}/rtl/ibex_multdiv_slow.sv
${PRJ_DIR}/rtl/ibex_multdiv_fast.sv
${PRJ_DIR}/rtl/ibex_prefetch_buffer.sv
${PRJ_DIR}/rtl/ibex_fetch_fifo.sv
${PRJ_DIR}/rtl/ibex_register_file_common.sv
${PRJ_DIR}/rtl/ibex_register_file_ff.sv
${PRJ_DIR}/rtl/ibex_register_file_fpga.sv
${PRJ_DIR}/rtl/ibex_register_file_latch.sv

View file

@ -19,6 +19,7 @@ filesets:
- lowrisc:prim:onehot_check
- lowrisc:prim:onehot
files:
- rtl/ibex_register_file_common.sv
- rtl/ibex_register_file_ff.sv # generic FF-based
- rtl/ibex_register_file_fpga.sv # FPGA
- rtl/ibex_register_file_latch.sv # ASIC

View file

@ -17,5 +17,6 @@ ibex_multdiv_slow.sv
ibex_multdiv_fast.sv
ibex_prefetch_buffer.sv
ibex_fetch_fifo.sv
ibex_register_file_common.sv
ibex_register_file_ff.sv
ibex_core.sv

View file

@ -0,0 +1,173 @@
// Copyright lowRISC contributors.
// Copyright 2018 ETH Zurich and University of Bologna, see also CREDITS.md.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
/**
* RISC-V register file
*
* Register file common security functionality across multiple implementations
*/
module ibex_register_file_common #(
parameter bit FPGA = 0,
parameter int unsigned AddrWidth = 5,
parameter int unsigned NumWords = 2 ** AddrWidth,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0
) (
/* verilator lint_off UNUSED */
// Clock and Reset
input logic clk_i,
input logic rst_ni,
/* verilator lint_on UNUSED */
//Read port R1
input logic [4:0] raddr_a_i,
output logic [NumWords-1:0] raddr_onehot_a,
output logic oh_raddr_a_err,
//Read port R2
input logic [4:0] raddr_b_i,
output logic [NumWords-1:0] raddr_onehot_b,
output logic oh_raddr_b_err,
// Write port W1
input logic [ 4:0] waddr_a_i,
input logic we_a_i,
output logic [NumWords-1:0] we_onehot_a,
output logic oh_we_err,
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
);
if (FPGA) begin : gen_fpga_oh_we_a_o_decoder
always_comb begin : oh_we_a_o_decoder
for (int unsigned i = 0; i < NumWords; i++) begin
we_onehot_a[i] = (i == 0) ? we_a_i : 1'b0;
end
end
end else begin : gen_other_oh_we_a_o_decoder
always_comb begin : oh_we_a_o_decoder
for (int unsigned i = 0; i < NumWords; i++) begin
we_onehot_a[i] = (waddr_a_i == 5'(i)) ? we_a_i : 1'b0;
end
end
end
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// This checks for spurious WE strobes on the regfile.
if (WrenCheck) begin : gen_wren_check
// Buffer the decoded write enable bits so that the checker
// is not optimized into the address decoding logic.
logic [NumWords-1:0] we_onehot_a_buf;
prim_buf #(
.Width(NumWords)
) u_prim_buf (
.in_i (we_onehot_a),
.out_o(we_onehot_a_buf)
);
prim_onehot_check #(
.AddrWidth (AddrWidth),
.OneHotWidth(NumWords),
.AddrCheck (FPGA ? 0 : 1), // disable in case of FPGA impl, as we use [0] only
.EnableCheck(1),
) u_prim_onehot_check (
.clk_i,
.rst_ni,
.oh_i (we_onehot_a_buf),
.addr_i(waddr_a_i),
.en_i (we_a_i),
.err_o (oh_we_err)
);
end else begin : gen_no_wren_check
if (FPGA) begin : gen_unused_wren_check
logic unused_waddr_a;
assign unused_waddr_a = ^waddr_a_i;
end
assign oh_we_err = 1'b0;
end
if (RdataMuxCheck) begin : gen_rdata_mux_check
// Encode raddr_a/b into one-hot encoded signals.
logic [NumWords-1:0] raddr_onehot_a_buf, raddr_onehot_b_buf;
prim_onehot_enc #(
.OneHotWidth(NumWords)
) u_prim_onehot_enc_raddr_a (
.in_i (raddr_a_i),
.en_i (1'b1),
.out_o(raddr_onehot_a)
);
prim_onehot_enc #(
.OneHotWidth(NumWords)
) u_prim_onehot_enc_raddr_b (
.in_i (raddr_b_i),
.en_i (1'b1),
.out_o(raddr_onehot_b)
);
// Buffer the one-hot encoded signals so that the checkers
// are not optimized.
prim_buf #(
.Width(NumWords)
) u_prim_buf_raddr_a (
.in_i (raddr_onehot_a),
.out_o(raddr_onehot_a_buf)
);
prim_buf #(
.Width(NumWords)
) u_prim_buf_raddr_b (
.in_i (raddr_onehot_b),
.out_o(raddr_onehot_b_buf)
);
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// Check the one-hot encoded signals for glitches.
prim_onehot_check #(
.AddrWidth (AddrWidth),
.OneHotWidth(NumWords),
.AddrCheck (1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_a (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_a_buf),
.addr_i(raddr_a_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_a_err)
);
prim_onehot_check #(
.AddrWidth (AddrWidth),
.OneHotWidth(NumWords),
.AddrCheck (1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_b (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_b_buf),
.addr_i(raddr_b_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_b_err)
);
end else begin : gen_no_rdata_mux_check
assign oh_raddr_a_err = 1'b0;
assign oh_raddr_b_err = 1'b0;
assign raddr_onehot_a = '0;
assign raddr_onehot_b = '0;
logic unused_raddr;
assign unused_raddr = ^{raddr_a_i, raddr_b_i};
end
assign err_o = oh_raddr_a_err || oh_raddr_b_err || oh_we_err;
endmodule

View file

@ -11,231 +11,157 @@
* targeting FPGA synthesis or Verilator simulation.
*/
module ibex_register_file_ff #(
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
) (
// Clock and Reset
input logic clk_i,
input logic rst_ni,
// Clock and Reset
input logic clk_i,
input logic rst_ni,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
//Read port R1
input logic [4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R1
input logic [ 4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R2
input logic [4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
//Read port R2
input logic [ 4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
// Write port W1
input logic [4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
// Write port W1
input logic [ 4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
);
localparam int unsigned ADDR_WIDTH = RV32E ? 4 : 5;
localparam int unsigned NUM_WORDS = 2**ADDR_WIDTH;
localparam int unsigned ADDR_WIDTH = RV32E ? 4 : 5;
localparam int unsigned NUM_WORDS = 2 ** ADDR_WIDTH;
logic [DataWidth-1:0] rf_reg [NUM_WORDS];
logic [NUM_WORDS-1:0] we_a_dec;
logic [DataWidth-1:0] rf_reg[NUM_WORDS];
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
// Encode we_a/raddr_a/raddr_b into one-hot encoded signals
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b, we_onehot_a;
always_comb begin : we_a_decoder
for (int unsigned i = 0; i < NUM_WORDS; i++) begin
we_a_dec[i] = (waddr_a_i == 5'(i)) ? we_a_i : 1'b0;
end
end
// One-hot encoding error signals
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// This checks for spurious WE strobes on the regfile.
if (WrenCheck) begin : gen_wren_check
// Buffer the decoded write enable bits so that the checker
// is not optimized into the address decoding logic.
logic [NUM_WORDS-1:0] we_a_dec_buf;
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf (
.in_i(we_a_dec),
.out_o(we_a_dec_buf)
// Common security functionality
ibex_register_file_common #(
.AddrWidth(ADDR_WIDTH),
.NumWords(NUM_WORDS),
.WrenCheck(WrenCheck),
.RdataMuxCheck(RdataMuxCheck)
) security_module (
.clk_i,
.rst_ni,
.raddr_a_i,
.raddr_onehot_a,
.oh_raddr_a_err,
.raddr_b_i,
.raddr_onehot_b,
.oh_raddr_b_err,
.waddr_a_i,
.we_a_i,
.we_onehot_a,
.oh_we_err,
.err_o
);
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.AddrCheck(1),
.EnableCheck(1)
) u_prim_onehot_check (
.clk_i,
.rst_ni,
.oh_i(we_a_dec_buf),
.addr_i(waddr_a_i),
.en_i(we_a_i),
.err_o(oh_we_err)
);
end else begin : gen_no_wren_check
logic unused_strobe;
assign unused_strobe = we_a_dec[0]; // this is never read from in this case
assign oh_we_err = 1'b0;
end
// No flops for R0 as it's hard-wired to 0
for (genvar i = 1; i < NUM_WORDS; i++) begin : g_rf_flops
logic [DataWidth-1:0] rf_reg_q;
// No flops for R0 as it's hard-wired to 0
for (genvar i = 1; i < NUM_WORDS; i++) begin : g_rf_flops
logic [DataWidth-1:0] rf_reg_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rf_reg_q <= WordZeroVal;
end else if (we_onehot_a[i]) begin
rf_reg_q <= wdata_a_i;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rf_reg_q <= WordZeroVal;
end else if (we_a_dec[i]) begin
rf_reg_q <= wdata_a_i;
end
assign rf_reg[i] = rf_reg_q;
end
assign rf_reg[i] = rf_reg_q;
end
// With dummy instructions enabled, R0 behaves as a real register but will always return 0 for
// real instructions.
if (DummyInstructions) begin : g_dummy_r0
// SEC_CM: CTRL_FLOW.UNPREDICTABLE
logic we_r0_dummy;
logic [DataWidth-1:0] rf_r0_q;
// With dummy instructions enabled, R0 behaves as a real register but will always return 0 for
// real instructions.
if (DummyInstructions) begin : g_dummy_r0
// SEC_CM: CTRL_FLOW.UNPREDICTABLE
logic we_r0_dummy;
logic [DataWidth-1:0] rf_r0_q;
// Write enable for dummy R0 register (waddr_a_i will always be 0 for dummy instructions)
assign we_r0_dummy = we_a_i & dummy_instr_wb_i;
// Write enable for dummy R0 register (waddr_a_i will always be 0 for dummy instructions)
assign we_r0_dummy = we_a_i & dummy_instr_wb_i;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rf_r0_q <= WordZeroVal;
end else if (we_r0_dummy) begin
rf_r0_q <= wdata_a_i;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rf_r0_q <= WordZeroVal;
end else if (we_r0_dummy) begin
rf_r0_q <= wdata_a_i;
end
// Output the dummy data for dummy instructions, otherwise R0 reads as zero
assign rf_reg[0] = dummy_instr_id_i ? rf_r0_q : WordZeroVal;
end else begin : g_normal_r0
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
// R0 is nil
assign rf_reg[0] = WordZeroVal;
end
// Output the dummy data for dummy instructions, otherwise R0 reads as zero
assign rf_reg[0] = dummy_instr_id_i ? rf_r0_q : WordZeroVal;
if (RdataMuxCheck) begin : gen_rdata_mux_check
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (rf_reg),
.sel_i(raddr_onehot_a),
.out_o(rdata_a_o)
);
end else begin : g_normal_r0
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (rf_reg),
.sel_i(raddr_onehot_b),
.out_o(rdata_b_o)
);
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = rf_reg[raddr_a_i];
assign rdata_b_o = rf_reg[raddr_b_i];
// R0 is nil
assign rf_reg[0] = WordZeroVal;
end
logic unused_raddr_onehot, unused_oh_raddr_err;
assign unused_raddr_onehot = ^{raddr_onehot_a, raddr_onehot_b};
assign unused_oh_raddr_err = ^{oh_raddr_a_err, oh_raddr_b_err};
end
if (RdataMuxCheck) begin : gen_rdata_mux_check
// Encode raddr_a/b into one-hot encoded signals.
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b;
logic [NUM_WORDS-1:0] raddr_onehot_a_buf, raddr_onehot_b_buf;
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_a (
.in_i (raddr_a_i),
.en_i (1'b1),
.out_o (raddr_onehot_a)
);
// Signal not used in FF register file
logic unused_test_en;
assign unused_test_en = test_en_i;
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_b (
.in_i (raddr_b_i),
.en_i (1'b1),
.out_o (raddr_onehot_b)
);
// Buffer the one-hot encoded signals so that the checkers
// are not optimized.
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_a (
.in_i (raddr_onehot_a),
.out_o(raddr_onehot_a_buf)
);
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_b (
.in_i (raddr_onehot_b),
.out_o(raddr_onehot_b_buf)
);
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// Check the one-hot encoded signals for glitches.
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_a (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_a_buf),
.addr_i (raddr_a_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_a_err)
);
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_b (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_b_buf),
.addr_i (raddr_b_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_b_err)
);
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (rf_reg),
.sel_i (raddr_onehot_a),
.out_o (rdata_a_o)
);
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (rf_reg),
.sel_i (raddr_onehot_b),
.out_o (rdata_b_o)
);
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = rf_reg[raddr_a_i];
assign rdata_b_o = rf_reg[raddr_b_i];
assign oh_raddr_a_err = 1'b0;
assign oh_raddr_b_err = 1'b0;
end
assign err_o = oh_raddr_a_err || oh_raddr_b_err || oh_we_err;
// Signal not used in FF register file
logic unused_test_en;
assign unused_test_en = test_en_i;
if (WrenCheck) begin : gen_wren_check
end else begin : gen_unused_wren_check
logic unused_strobe, unused_oh_we_err;
assign unused_strobe = we_onehot_a[0]; // this is never read from in this case
assign unused_oh_we_err = oh_we_err; // this is never read from in this case
end
endmodule

View file

@ -12,190 +12,144 @@
* FPGA architectures, it will produce RAM32M primitives. Other vendors have not yet been tested.
*/
module ibex_register_file_fpga #(
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
) (
// Clock and Reset
input logic clk_i,
input logic rst_ni,
// Clock and Reset
input logic clk_i,
input logic rst_ni,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
//Read port R1
input logic [ 4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R2
input logic [ 4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
// Write port W1
input logic [ 4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
//Read port R1
input logic [ 4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R2
input logic [ 4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
// Write port W1
input logic [ 4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
);
localparam int ADDR_WIDTH = RV32E ? 4 : 5;
localparam int NUM_WORDS = 2 ** ADDR_WIDTH;
localparam int ADDR_WIDTH = RV32E ? 4 : 5;
localparam int NUM_WORDS = 2 ** ADDR_WIDTH;
logic [DataWidth-1:0] mem[NUM_WORDS];
logic we; // write enable if writing to any register other than R0
logic [DataWidth-1:0] mem[NUM_WORDS];
logic we; // write enable if writing to any register other than R0
logic [DataWidth-1:0] mem_o_a, mem_o_b;
// Encode we_a/raddr_a/raddr_b into one-hot encoded signals
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b, we_onehot_a;
// WE strobe and one-hot encoded raddr alert.
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
assign err_o = oh_raddr_a_err || oh_raddr_b_err || oh_we_err;
// WE strobe and one-hot encoded raddr alert.
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
if (RdataMuxCheck) begin : gen_rdata_mux_check
// Encode raddr_a/b into one-hot encoded signals.
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b;
logic [NUM_WORDS-1:0] raddr_onehot_a_buf, raddr_onehot_b_buf;
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_a (
.in_i (raddr_a_i),
.en_i (1'b1),
.out_o (raddr_onehot_a)
logic [DataWidth-1:0] mem_o_a, mem_o_b;
// Common security functionality
ibex_register_file_common #(
.FPGA(1),
.AddrWidth(ADDR_WIDTH),
.NumWords(NUM_WORDS),
.WrenCheck(WrenCheck),
.RdataMuxCheck(RdataMuxCheck)
) security_module (
.clk_i,
.rst_ni,
.raddr_a_i,
.raddr_onehot_a,
.oh_raddr_a_err,
.raddr_b_i,
.raddr_onehot_b,
.oh_raddr_b_err,
.waddr_a_i,
.we_a_i,
.we_onehot_a,
.oh_we_err,
.err_o
);
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_b (
.in_i (raddr_b_i),
.en_i (1'b1),
.out_o (raddr_onehot_b)
);
if (RdataMuxCheck) begin : gen_rdata_mux_check
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i(raddr_onehot_a),
.out_o(mem_o_a)
);
// Buffer the one-hot encoded signals so that the checkers
// are not optimized.
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_a (
.in_i (raddr_onehot_a),
.out_o(raddr_onehot_a_buf)
);
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i(raddr_onehot_b),
.out_o(mem_o_b)
);
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_b (
.in_i (raddr_onehot_b),
.out_o(raddr_onehot_b_buf)
);
assign rdata_a_o = (raddr_a_i == '0) ? WordZeroVal : mem_o_a;
assign rdata_b_o = (raddr_b_i == '0) ? WordZeroVal : mem_o_b;
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = (raddr_a_i == '0) ? WordZeroVal : mem[raddr_a_i];
assign rdata_b_o = (raddr_b_i == '0) ? WordZeroVal : mem[raddr_b_i];
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// Check the one-hot encoded signals for glitches.
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_a (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_a_buf),
.addr_i (raddr_a_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_a_err)
);
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_b (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_b_buf),
.addr_i (raddr_b_i),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_b_err)
);
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i (raddr_onehot_a),
.out_o (mem_o_a)
);
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i (raddr_onehot_b),
.out_o (mem_o_b)
);
assign rdata_a_o = (raddr_a_i == '0) ? WordZeroVal : mem_o_a;
assign rdata_b_o = (raddr_b_i == '0) ? WordZeroVal : mem_o_b;
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = (raddr_a_i == '0) ? WordZeroVal : mem[raddr_a_i];
assign rdata_b_o = (raddr_b_i == '0) ? WordZeroVal : mem[raddr_b_i];
assign oh_raddr_a_err = 1'b0;
assign oh_raddr_b_err = 1'b0;
end
// we select
assign we = (waddr_a_i == '0) ? 1'b0 : we_a_i;
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// This checks for spurious WE strobes on the regfile.
if (WrenCheck) begin : gen_wren_check
// Since the FPGA uses a memory macro, there is only one write-enable strobe to check.
assign oh_we_err = we && !we_a_i;
end else begin : gen_no_wren_check
assign oh_we_err = 1'b0;
end
// Note that the SystemVerilog LRM requires variables on the LHS of assignments within
// "always_ff" to not be written to by any other process. However, to enable the initialization
// of the inferred RAM32M primitives with non-zero values, below "initial" procedure is needed.
// Therefore, we use "always" instead of the generally preferred "always_ff" for the synchronous
// write procedure.
always @(posedge clk_i) begin : sync_write
if (we == 1'b1) begin
mem[waddr_a_i] <= wdata_a_i;
logic unused_raddr_onehot, unused_oh_raddr_err;
assign unused_raddr_onehot = ^{raddr_onehot_a, raddr_onehot_b};
assign unused_oh_raddr_err = ^{oh_raddr_a_err, oh_raddr_b_err};
end
end : sync_write
// Make sure we initialize the BRAM with the correct register reset value.
initial begin
for (int k = 0; k < NUM_WORDS; k++) begin
mem[k] = WordZeroVal;
// we select
assign we = (waddr_a_i == '0) ? 1'b0 : we_onehot_a[0];
// Note that the SystemVerilog LRM requires variables on the LHS of assignments within
// "always_ff" to not be written to by any other process. However, to enable the initialization
// of the inferred RAM32M primitives with non-zero values, below "initial" procedure is needed.
// Therefore, we use "always" instead of the generally preferred "always_ff" for the synchronous
// write procedure.
always @(posedge clk_i) begin : sync_write
if (we == 1'b1) begin
mem[waddr_a_i] <= wdata_a_i;
end
end : sync_write
// Make sure we initialize the BRAM with the correct register reset value.
initial begin
for (int k = 0; k < NUM_WORDS; k++) begin
mem[k] = WordZeroVal;
end
end
end
// Reset not used in this register file version
logic unused_rst_ni;
assign unused_rst_ni = rst_ni;
// Reset not used in this register file version
logic unused_rst_ni;
assign unused_rst_ni = rst_ni;
// Dummy instruction changes not relevant for FPGA implementation
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
// Test enable signal not used in FPGA implementation
logic unused_test_en;
assign unused_test_en = test_en_i;
// Dummy instruction changes not relevant for FPGA implementation
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
// Test enable signal not used in FPGA implementation
logic unused_test_en;
assign unused_test_en = test_en_i;
if (WrenCheck) begin : gen_wren_check
end else begin : gen_unused_wren_check
logic unused_oh_we_err;
assign unused_oh_we_err = oh_we_err; // this is never read from in this case
end
endmodule

View file

@ -12,289 +12,209 @@
* register file when targeting ASIC synthesis or event-based simulators.
*/
module ibex_register_file_latch #(
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
parameter bit RV32E = 0,
parameter int unsigned DataWidth = 32,
parameter bit DummyInstructions = 0,
parameter bit WrenCheck = 0,
parameter bit RdataMuxCheck = 0,
parameter logic [DataWidth-1:0] WordZeroVal = '0
) (
// Clock and Reset
input logic clk_i,
input logic rst_ni,
// Clock and Reset
input logic clk_i,
input logic rst_ni,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
input logic test_en_i,
input logic dummy_instr_id_i,
input logic dummy_instr_wb_i,
//Read port R1
input logic [4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R1
input logic [ 4:0] raddr_a_i,
output logic [DataWidth-1:0] rdata_a_o,
//Read port R2
input logic [4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
//Read port R2
input logic [ 4:0] raddr_b_i,
output logic [DataWidth-1:0] rdata_b_o,
// Write port W1
input logic [4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
// Write port W1
input logic [ 4:0] waddr_a_i,
input logic [DataWidth-1:0] wdata_a_i,
input logic we_a_i,
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
// This indicates whether spurious WE or non-one-hot encoded raddr are detected.
output logic err_o
);
localparam int unsigned ADDR_WIDTH = RV32E ? 4 : 5;
localparam int unsigned NUM_WORDS = 2**ADDR_WIDTH;
localparam int unsigned ADDR_WIDTH = RV32E ? 4 : 5;
localparam int unsigned NUM_WORDS = 2 ** ADDR_WIDTH;
logic [DataWidth-1:0] mem[NUM_WORDS];
logic [DataWidth-1:0] mem[NUM_WORDS];
logic [NUM_WORDS-1:0] waddr_onehot_a;
logic [NUM_WORDS-1:0] waddr_onehot_a;
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
// One-hot encoding error signals
logic oh_raddr_a_err, oh_raddr_b_err, oh_we_err;
logic [NUM_WORDS-1:1] mem_clocks;
logic [DataWidth-1:0] wdata_a_q;
logic [NUM_WORDS-1:1] mem_clocks;
logic [DataWidth-1:0] wdata_a_q;
// internal addresses
logic [ADDR_WIDTH-1:0] raddr_a_int, raddr_b_int, waddr_a_int;
// internal addresses
logic [ADDR_WIDTH-1:0] raddr_a_int, raddr_b_int, waddr_a_int;
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b, we_onehot_a;
assign raddr_a_int = raddr_a_i[ADDR_WIDTH-1:0];
assign raddr_b_int = raddr_b_i[ADDR_WIDTH-1:0];
assign waddr_a_int = waddr_a_i[ADDR_WIDTH-1:0];
assign raddr_a_int = raddr_a_i[ADDR_WIDTH-1:0];
assign raddr_b_int = raddr_b_i[ADDR_WIDTH-1:0];
assign waddr_a_int = waddr_a_i[ADDR_WIDTH-1:0];
logic clk_int;
logic clk_int;
assign err_o = oh_raddr_a_err || oh_raddr_b_err || oh_we_err;
//////////
// READ //
//////////
if (RdataMuxCheck) begin : gen_rdata_mux_check
// Encode raddr_a/b into one-hot encoded signals.
logic [NUM_WORDS-1:0] raddr_onehot_a, raddr_onehot_b;
logic [NUM_WORDS-1:0] raddr_onehot_a_buf, raddr_onehot_b_buf;
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_a (
.in_i (raddr_a_int),
.en_i (1'b1),
.out_o (raddr_onehot_a)
// Common security functionality
ibex_register_file_common #(
.AddrWidth(ADDR_WIDTH),
.NumWords(NUM_WORDS),
.WrenCheck(WrenCheck),
.RdataMuxCheck(RdataMuxCheck)
) security_module (
.clk_i,
.rst_ni,
.raddr_a_i(raddr_a_int),
.raddr_onehot_a,
.oh_raddr_a_err,
.raddr_b_i(raddr_b_int),
.raddr_onehot_b,
.oh_raddr_b_err,
.waddr_a_i(waddr_a_int),
.we_a_i,
.we_onehot_a,
.oh_we_err,
.err_o
);
prim_onehot_enc #(
.OneHotWidth(NUM_WORDS)
) u_prim_onehot_enc_raddr_b (
.in_i (raddr_b_int),
.en_i (1'b1),
.out_o (raddr_onehot_b)
);
//////////
// READ //
//////////
if (RdataMuxCheck) begin : gen_rdata_mux_check
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i(raddr_onehot_a),
.out_o(rdata_a_o)
);
// Buffer the one-hot encoded signals so that the checkers
// are not optimized.
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_a (
.in_i(raddr_onehot_a),
.out_o(raddr_onehot_a_buf)
);
prim_onehot_mux #(
.Width (DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i(raddr_onehot_b),
.out_o(rdata_b_o)
);
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = mem[raddr_a_int];
assign rdata_b_o = mem[raddr_b_int];
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf_raddr_b (
.in_i(raddr_onehot_b),
.out_o(raddr_onehot_b_buf)
);
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// Check the one-hot encoded signals for glitches.
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_a (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_a_buf),
.addr_i (raddr_a_int),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_a_err)
);
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.OneHotWidth(NUM_WORDS),
.AddrCheck(1),
// When AddrCheck=1 also EnableCheck needs to be 1.
.EnableCheck(1)
) u_prim_onehot_check_raddr_b (
.clk_i,
.rst_ni,
.oh_i (raddr_onehot_b_buf),
.addr_i (raddr_b_int),
// Set enable=1 as address is always valid.
.en_i (1'b1),
.err_o (oh_raddr_b_err)
);
// MUX register to rdata_a/b_o according to raddr_a/b_onehot.
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_a_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i (raddr_onehot_a),
.out_o (rdata_a_o)
);
prim_onehot_mux #(
.Width(DataWidth),
.Inputs(NUM_WORDS)
) u_rdata_b_mux (
.clk_i,
.rst_ni,
.in_i (mem),
.sel_i (raddr_onehot_b),
.out_o (rdata_b_o)
);
end else begin : gen_no_rdata_mux_check
assign rdata_a_o = mem[raddr_a_int];
assign rdata_b_o = mem[raddr_b_int];
assign oh_raddr_a_err = 1'b0;
assign oh_raddr_b_err = 1'b0;
end
///////////
// WRITE //
///////////
// Global clock gating
prim_clock_gating cg_we_global (
.clk_i ( clk_i ),
.en_i ( we_a_i ),
.test_en_i ( test_en_i ),
.clk_o ( clk_int )
);
// Sample input data
// Use clk_int here, since otherwise we don't want to write anything anyway.
always_ff @(posedge clk_int or negedge rst_ni) begin : sample_wdata
if (!rst_ni) begin
wdata_a_q <= WordZeroVal;
end else begin
if (we_a_i) begin
wdata_a_q <= wdata_a_i;
end
end
end
// Write address decoding
always_comb begin : wad
for (int i = 0; i < NUM_WORDS; i++) begin : wad_word_iter
if (we_a_i && (waddr_a_int == 5'(i))) begin
waddr_onehot_a[i] = 1'b1;
end else begin
waddr_onehot_a[i] = 1'b0;
end
end
end
// SEC_CM: DATA_REG_SW.GLITCH_DETECT
// This checks for spurious WE strobes on the regfile.
if (WrenCheck) begin : gen_wren_check
// Buffer the decoded write enable bits so that the checker
// is not optimized into the address decoding logic.
logic [NUM_WORDS-1:0] waddr_onehot_a_buf;
prim_buf #(
.Width(NUM_WORDS)
) u_prim_buf (
.in_i(waddr_onehot_a),
.out_o(waddr_onehot_a_buf)
);
prim_onehot_check #(
.AddrWidth(ADDR_WIDTH),
.AddrCheck(1),
.EnableCheck(1)
) u_prim_onehot_check (
.clk_i,
.rst_ni,
.oh_i(waddr_onehot_a_buf),
.addr_i(waddr_a_i),
.en_i(we_a_i),
.err_o(oh_we_err)
);
end else begin : gen_no_wren_check
logic unused_strobe;
assign unused_strobe = waddr_onehot_a[0]; // this is never read from in this case
assign oh_we_err = 1'b0;
end
// Individual clock gating (if integrated clock-gating cells are available)
for (genvar x = 1; x < NUM_WORDS; x++) begin : gen_cg_word_iter
prim_clock_gating cg_i (
.clk_i ( clk_int ),
.en_i ( waddr_onehot_a[x] ),
.test_en_i ( test_en_i ),
.clk_o ( mem_clocks[x] )
);
end
// Actual write operation:
// Generate the sequential process for the NUM_WORDS words of the memory.
// The process is synchronized with the clocks mem_clocks[i], i = 1, ..., NUM_WORDS-1.
for (genvar i = 1; i < NUM_WORDS; i++) begin : g_rf_latches
always_latch begin
if (mem_clocks[i]) begin
mem[i] = wdata_a_q;
end
end
end
// With dummy instructions enabled, R0 behaves as a real register but will always return 0 for
// real instructions.
if (DummyInstructions) begin : g_dummy_r0
// SEC_CM: CTRL_FLOW.UNPREDICTABLE
logic we_r0_dummy;
logic r0_clock;
logic [DataWidth-1:0] mem_r0;
// Write enable for dummy R0 register (waddr_a_i will always be 0 for dummy instructions)
assign we_r0_dummy = we_a_i & dummy_instr_wb_i;
// R0 clock gate
prim_clock_gating cg_i (
.clk_i ( clk_int ),
.en_i ( we_r0_dummy ),
.test_en_i ( test_en_i ),
.clk_o ( r0_clock )
);
always_latch begin : latch_wdata
if (r0_clock) begin
mem_r0 = wdata_a_q;
end
logic unused_raddr_onehot, unused_oh_raddr_err;
assign unused_raddr_onehot = ^{raddr_onehot_a, raddr_onehot_b};
assign unused_oh_raddr_err = ^{oh_raddr_a_err, oh_raddr_b_err};
end
// Output the dummy data for dummy instructions, otherwise R0 reads as zero
assign mem[0] = dummy_instr_id_i ? mem_r0 : WordZeroVal;
///////////
// WRITE //
///////////
// Global clock gating
prim_clock_gating cg_we_global (
.clk_i (clk_i),
.en_i (we_a_i),
.test_en_i(test_en_i),
.clk_o (clk_int)
);
end else begin : g_normal_r0
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
// Sample input data
// Use clk_int here, since otherwise we don't want to write anything anyway.
always_ff @(posedge clk_int or negedge rst_ni) begin : sample_wdata
if (!rst_ni) begin
wdata_a_q <= WordZeroVal;
end else begin
if (we_a_i) begin
wdata_a_q <= wdata_a_i;
end
end
end
assign mem[0] = WordZeroVal;
end
// Individual clock gating (if integrated clock-gating cells are available)
for (genvar x = 1; x < NUM_WORDS; x++) begin : gen_cg_word_iter
prim_clock_gating cg_i (
.clk_i (clk_int),
.en_i (we_onehot_a[x]),
.test_en_i(test_en_i),
.clk_o (mem_clocks[x])
);
end
// Actual write operation:
// Generate the sequential process for the NUM_WORDS words of the memory.
// The process is synchronized with the clocks mem_clocks[i], i = 1, ..., NUM_WORDS-1.
for (genvar i = 1; i < NUM_WORDS; i++) begin : g_rf_latches
always_latch begin
if (mem_clocks[i]) begin
mem[i] = wdata_a_q;
end
end
end
// With dummy instructions enabled, R0 behaves as a real register but will always return 0 for
// real instructions.
if (DummyInstructions) begin : g_dummy_r0
// SEC_CM: CTRL_FLOW.UNPREDICTABLE
logic we_r0_dummy;
logic r0_clock;
logic [DataWidth-1:0] mem_r0;
// Write enable for dummy R0 register (waddr_a_i will always be 0 for dummy instructions)
assign we_r0_dummy = we_a_i & dummy_instr_wb_i;
// R0 clock gate
prim_clock_gating cg_i (
.clk_i (clk_int),
.en_i (we_r0_dummy),
.test_en_i(test_en_i),
.clk_o (r0_clock)
);
always_latch begin : latch_wdata
if (r0_clock) begin
mem_r0 = wdata_a_q;
end
end
// Output the dummy data for dummy instructions, otherwise R0 reads as zero
assign mem[0] = dummy_instr_id_i ? mem_r0 : WordZeroVal;
end else begin : g_normal_r0
logic unused_dummy_instr;
assign unused_dummy_instr = dummy_instr_id_i ^ dummy_instr_wb_i;
assign mem[0] = WordZeroVal;
end
if (WrenCheck) begin : gen_wren_check
end else begin : gen_unused_wren_check
logic unused_strobe, unused_oh_we_err;
assign unused_strobe = we_onehot_a[0]; // this is never read from in this case
assign unused_oh_we_err = oh_we_err; // this is never read from in this case
end
`ifdef VERILATOR
initial begin
$display("Latch-based register file not supported for Verilator simulation");
$fatal;
end
initial begin
$display("Latch-based register file not supported for Verilator simulation");
$fatal;
end
`endif
endmodule