ibex/dv/cosim/spike_cosim.cc
2024-07-03 15:31:44 +00:00

1144 lines
40 KiB
C++

// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "spike_cosim.h"
#include <cassert>
#include <iostream>
#include <sstream>
#include "riscv/config.h"
#include "riscv/decode.h"
#include "riscv/devices.h"
#include "riscv/log_file.h"
#include "riscv/mmu.h"
#include "riscv/processor.h"
#include "riscv/simif.h"
// For a short time, we're going to support building against version
// ibex-cosim-v0.2 (20a886c) and also ibex-cosim-v0.3 (9af9730). Unfortunately,
// they've got different APIs and spike doesn't expose a version string.
//
// However, a bit of digging around finds some defines that have been added
// between the two versions.
//
// TODO: Once there's been a bit of a window to avoid a complete flag day,
// remove this ugly hack!
#ifndef HGATP_MODE_SV57X4
#define OLD_SPIKE
#endif
#ifndef OLD_SPIKE
#include "riscv/isa_parser.h"
#endif
SpikeCosim::SpikeCosim(const std::string &isa_string, uint32_t start_pc,
uint32_t start_mtvec, const std::string &trace_log_path,
bool secure_ibex, bool icache_en,
uint32_t pmp_num_regions, uint32_t pmp_granularity,
uint32_t mhpm_counter_num)
: nmi_mode(false), pending_iside_error(false), insn_cnt(0) {
FILE *log_file = nullptr;
if (trace_log_path.length() != 0) {
log = std::make_unique<log_file_t>(trace_log_path.c_str());
log_file = log->get();
}
#ifdef OLD_SPIKE
processor =
std::make_unique<processor_t>(isa_string.c_str(), "MU", DEFAULT_VARCH,
this, 0, false, log_file, std::cerr);
#else
#ifdef COSIM_SIGSEGV_WORKAROUND
isa_parser = new isa_parser_t(isa_string.c_str(), "MU");
processor = std::make_unique<processor_t>(isa_parser, DEFAULT_VARCH, this, 0,
false, log_file, std::cerr);
#else
isa_parser = std::make_unique<isa_parser_t>(isa_string.c_str(), "MU");
processor = std::make_unique<processor_t>(
isa_parser.get(), DEFAULT_VARCH, this, 0, false, log_file, std::cerr);
#endif
#endif
processor->set_pmp_num(pmp_num_regions);
processor->set_mhpm_counter_num(mhpm_counter_num);
processor->set_pmp_granularity(1 << (pmp_granularity + 2));
processor->set_ibex_flags(secure_ibex, icache_en);
initial_proc_setup(start_pc, start_mtvec, mhpm_counter_num);
if (log) {
processor->set_debug(true);
processor->enable_log_commits();
}
}
// always return nullptr so all memory accesses go via mmio_load/mmio_store
char *SpikeCosim::addr_to_mem(reg_t addr) { return nullptr; }
bool SpikeCosim::mmio_load(reg_t addr, size_t len, uint8_t *bytes) {
bool bus_error = !bus.load(addr, len, bytes);
bool dut_error = false;
// Incoming access may be an iside or dside access. Use PC to help determine
// which. PC is 64 bits in spike, we only care about the bottom 32-bit so mask
// off the top bits.
uint64_t pc = processor->get_state()->pc & 0xffffffff;
uint32_t aligned_addr = addr & 0xfffffffc;
if (pending_iside_error && (aligned_addr == pending_iside_err_addr)) {
// Check if the incoming access is subject to an iside error, in which case
// assume it's an iside access and produce an error.
pending_iside_error = false;
dut_error = true;
} else {
// Spike may attempt to access up to 8-bytes from the PC when fetching, so
// only check as a dside access when it falls outside that range
bool in_iside_range = (addr >= pc && addr < pc + 8);
if (!in_iside_range) {
dut_error = (check_mem_access(false, addr, len, bytes) != kCheckMemOk);
}
}
return !(bus_error || dut_error);
}
bool SpikeCosim::mmio_store(reg_t addr, size_t len, const uint8_t *bytes) {
bool bus_error = !bus.store(addr, len, bytes);
// If the RTL produced a bus error for the access, or the checking failed
// produce a memory fault in spike.
bool dut_error = (check_mem_access(true, addr, len, bytes) != kCheckMemOk);
return !(bus_error || dut_error);
}
void SpikeCosim::proc_reset(unsigned id) {}
const char *SpikeCosim::get_symbol(uint64_t addr) { return nullptr; }
void SpikeCosim::add_memory(uint32_t base_addr, size_t size) {
auto new_mem = std::make_unique<mem_t>(size);
bus.add_device(base_addr, new_mem.get());
mems.emplace_back(std::move(new_mem));
}
bool SpikeCosim::backdoor_write_mem(uint32_t addr, size_t len,
const uint8_t *data_in) {
return bus.store(addr, len, data_in);
}
bool SpikeCosim::backdoor_read_mem(uint32_t addr, size_t len,
uint8_t *data_out) {
return bus.load(addr, len, data_out);
}
// When we call processor->step(), spike advances to the next pc IFF a trap does
// not occur. If a trap does occur, state.last_inst_pc is set to PC_INVALID, and
// we need to call step() again to actually execute the first instruction of the
// trap handler.
// This sentinel value PC_INVALID of state.last_inst_pc allows the cosimulation
// testbench to detect when spike is in this transient state, where we have
// attempted to step but have taken a trap instead and not actually executed
// another instruction.
//
// The flow of spike goes something like this...
// - Start of processor_t::step()
// Set state.last_inst_pc to PC_INVALID. This is only set back to a
// non-sentinel valid pc if the processor is able to completely execute the
// next instruction. It is set back to a valid pc at the end of
// execute_insn().
// - When calling execute_insn(), we try/except the fetch.func(), which
// eventually calls one of the templated instructions in insn_template.cc.
// These functions return the npc. From fetch.func(), we expect to catch
// the exceptions (wait_for_interrupt_t, mem_trap_t&), which don't finish
// executing the insn, but do result in printing to the log and re-throwing
// the exception to be caught up one level by the step() function.
// - In step(), while trying to execute an instruction (down either the
// fast/slow paths), we can catch an exception (trap_t&, triggers::matched_t&,
// wait_for_interrupt_t), which means the pc never gets advanced. The pc only
// gets advanced right at the end of the main paths if nothing goes awry (In
// the macro advance_pc()).
// The state.last_inst_pc also remains with the sentinel value PC_INVALID.
// - If we catch a trap_t&, then the take_trap() fn updates the state of the
// processor, and when we call step() again we start executing in the new
// context of the trap (trap andler, new MSTATUS, debug rom, etc. etc.)
bool SpikeCosim::step(uint32_t write_reg, uint32_t write_reg_data, uint32_t pc,
bool sync_trap, bool suppress_reg_write) {
assert(write_reg < 32);
// The DUT has just produced an RVFI item
// (parameters of this func is the data in the RVFI item).
// First check to see if this is an ebreak that should enter debug mode. These
// need specific handling. When spike steps over them it'll immediately step
// the next instruction (i.e. the first instruction of the debug handler) too.
// In effect it treats it as a transition to debug mode that doesn't retire
// any instruction so needs to execute the next instruction to step a single
// time. To deal with this if it's a debug ebreak we skip the rest of this
// function checking a few invariants on the debug ebreak first.
if (pc_is_debug_ebreak(pc)) {
return check_debug_ebreak(write_reg, pc, sync_trap);
}
uint32_t initial_spike_pc;
uint32_t suppressed_write_reg;
uint32_t suppressed_write_reg_data;
bool pending_sync_exception = false;
if (suppress_reg_write) {
// If Ibex suppressed a register write (which occurs when a load gets data
// with bad integrity) record the state of the destination register before
// we do the stop, so we can restore it after the step (as spike won't
// suppressed the register write).
//
// First check retired instruciton to ensure load suppression is correct
if (!check_suppress_reg_write(write_reg, pc, suppressed_write_reg)) {
return false;
}
// The check gives us the destination register the instruction would have
// written to (write_reg will be 0 to indicate to write). Record the
// contents of that register.
suppressed_write_reg_data =
processor->get_state()->XPR[suppressed_write_reg];
}
// Before stepping Spike, record the current spike pc.
// (If the current step causes a synchronous trap, it will be
// recorded against the current pc)
initial_spike_pc = (processor->get_state()->pc & 0xffffffff);
processor->step(1);
// ISS
// - If encountered an async trap,
// - PC_INVALID == true
// - step again to execute 1st instr of handler
// - If encountered a sync trap,
// - PC_INVALID == true
// - current state is that of the trapping instruction
// - step again to execute 1st instr of handler
// - If encountering a sync trap, immediately upon trying to jump to a async
// trap handler, (the reverse is not possible, as async traps are
// disabled upon entering a handler)
// - PC_INVALID == true
// - current state is that of the trapping instruction
// DUT
// - If the dut encounters an async trap (which can be thought of as occuring
// between instructions), an rvfi_item will be generated for the the first
// retired instruction of the trap handler.
// - If the dut encounters a sync trap, an rvfi_item will be generated for the
// trapping instruction, with sync_trap == True. (The trapping instruction
// is presented on the RVFI but was not retired.)
if (processor->get_state()->last_inst_pc == PC_INVALID) {
if (!(processor->get_state()->mcause->read() & 0x80000000) ||
processor->get_state()
->debug_mode) { // (Async-Traps are disabled in debug mode)
// Spike encountered a synchronous trap
pending_sync_exception = true;
} else {
// Spike encountered an asynchronous trap.
// Step to the first instruction of the ISR.
initial_spike_pc = (processor->get_state()->pc & 0xffffffff);
processor->step(1);
if (processor->get_state()->last_inst_pc == PC_INVALID) {
// If we see PC_INVALID here, the first instr of the ISR must cause an
// exception, as interrupts are now disabled.
pending_sync_exception = true;
}
}
// If spike has advanced to be at a synchronous trap, now check that it
// matches the reported dut behaviour.
if (pending_sync_exception) {
if (!sync_trap) {
std::stringstream err_str;
err_str << "Synchronous trap was expected at ISS PC: " << std::hex
<< processor->get_state()->pc
<< " but the DUT didn't report one at PC " << pc;
errors.emplace_back(err_str.str());
return false;
}
if (!check_sync_trap(write_reg, pc, initial_spike_pc)) {
return false;
}
handle_cpuctrl_exception_entry();
// This is all the checking possible when consider a
// synchronously-trapping instruction that never retired.
return true;
}
}
// We reached a retired instruction, so check spike and the dut behaved
// consistently.
if (!sync_trap && pc_is_mret(pc)) {
change_cpuctrlsts_sync_exc_seen(false);
if (nmi_mode) {
// Do handling for recoverable NMI
leave_nmi_mode();
}
}
if (pending_iside_error) {
std::stringstream err_str;
err_str << "DUT generated an iside error for address: " << std::hex
<< pending_iside_err_addr << " but the ISS didn't produce one";
errors.emplace_back(err_str.str());
return false;
}
pending_iside_error = false;
if (suppress_reg_write) {
// If we suppressed a register write restore the old register state now
processor->get_state()->XPR.write(suppressed_write_reg,
suppressed_write_reg_data);
}
if (!check_retired_instr(write_reg, write_reg_data, pc, suppress_reg_write)) {
return false;
}
// Only increment insn_cnt and return true if there are no errors
insn_cnt++;
return true;
}
bool SpikeCosim::check_retired_instr(uint32_t write_reg,
uint32_t write_reg_data, uint32_t dut_pc,
bool suppress_reg_write) {
// Check the retired instruction and all of its side-effects match those from
// the DUT
// Check PC of executed instruction matches the expected PC
// TODO: Confirm details of why spike sign extends PC, something to do with
// 32-bit address as 64-bit address must be sign extended?
if ((processor->get_state()->last_inst_pc & 0xffffffff) != dut_pc) {
std::stringstream err_str;
err_str << "PC mismatch, DUT retired : " << std::hex << dut_pc
<< " , but the ISS retired: " << std::hex
<< processor->get_state()->last_inst_pc;
errors.emplace_back(err_str.str());
return false;
}
// Check register writes from executed instruction match what is expected
auto &reg_changes = processor->get_state()->log_reg_write;
bool gpr_write_seen = false;
for (auto reg_change : reg_changes) {
// reg_change.first provides register type in bottom 4 bits, then register
// index above that
// Ignore writes to x0
if (reg_change.first == 0)
continue;
if ((reg_change.first & 0xf) == 0) {
// register is GPR
// should never see more than one GPR write per step
assert(!gpr_write_seen);
if (!suppress_reg_write &&
!check_gpr_write(reg_change, write_reg, write_reg_data)) {
return false;
}
gpr_write_seen = true;
} else if ((reg_change.first & 0xf) == 4) {
// register is CSR
on_csr_write(reg_change);
} else {
// should never see other types
assert(false);
}
}
if (write_reg != 0 && !gpr_write_seen) {
std::stringstream err_str;
err_str << "DUT wrote register x" << write_reg
<< " but a write was not expected" << std::endl;
errors.emplace_back(err_str.str());
return false;
}
// Errors may have been generated outside of step()
// (e.g. in check_mem_access()).
if (errors.size() != 0) {
return false;
}
return true;
}
bool SpikeCosim::check_sync_trap(uint32_t write_reg, uint32_t dut_pc,
uint32_t initial_spike_pc) {
// Check if an synchronously-trapping instruction matches
// between Spike and the DUT.
// Check that both spike and DUT trapped on the same pc
if (initial_spike_pc != dut_pc) {
std::stringstream err_str;
err_str << "PC mismatch at synchronous trap, DUT at pc: " << std::hex
<< dut_pc << "while ISS pc is at : " << std::hex
<< initial_spike_pc;
errors.emplace_back(err_str.str());
return false;
}
// A sync trap should not have any side-effects, as the instruction appears on
// the DUT RVFI but is not actually retired.
if (write_reg != 0) {
std::stringstream err_str;
err_str << "Synchronous trap occurred at PC: " << std::hex << dut_pc
<< "but DUT wrote to register: x" << std::dec << write_reg;
errors.emplace_back(err_str.str());
return false;
}
if ((processor->get_state()->mcause->read() == 0x5) ||
(processor->get_state()->mcause->read() == 0x7)) {
// We have a load or store access fault, apply fixup for misaligned accesses
misaligned_pmp_fixup();
}
// If we see an internal NMI, that means we receive an extra memory intf item.
// Deleting that is necessary since next Load/Store would fail otherwise.
if (processor->get_state()->mcause->read() == 0xFFFFFFE0) {
pending_dside_accesses.erase(pending_dside_accesses.begin());
}
// Errors may have been generated outside of step() (e.g. in
// check_mem_access()), return false if there are any.
if (errors.size() != 0) {
return false;
}
return true;
}
bool SpikeCosim::check_gpr_write(const commit_log_reg_t::value_type &reg_change,
uint32_t write_reg, uint32_t write_reg_data) {
uint32_t cosim_write_reg = (reg_change.first >> 4) & 0x1f;
if (write_reg == 0) {
std::stringstream err_str;
err_str << "DUT didn't write to register x" << cosim_write_reg
<< ", but a write was expected";
errors.emplace_back(err_str.str());
return false;
}
if (write_reg != cosim_write_reg) {
std::stringstream err_str;
err_str << "Register write index mismatch, DUT: x" << write_reg
<< " expected: x" << cosim_write_reg;
errors.emplace_back(err_str.str());
return false;
}
// TODO: Investigate why this fails (may be because spike can produce PCs
// with high 32 bits set).
// assert((reg_change.second.v[0] & 0xffffffff00000000) == 0);
uint32_t cosim_write_reg_data = reg_change.second.v[0];
if (write_reg_data != cosim_write_reg_data) {
std::stringstream err_str;
err_str << "Register write data mismatch to x" << cosim_write_reg
<< " DUT: " << std::hex << write_reg_data
<< " expected: " << cosim_write_reg_data;
errors.emplace_back(err_str.str());
return false;
}
return true;
}
bool SpikeCosim::check_suppress_reg_write(uint32_t write_reg, uint32_t pc,
uint32_t &suppressed_write_reg) {
if (write_reg != 0) {
std::stringstream err_str;
err_str << "Instruction at " << std::hex << pc
<< " indicated a suppressed register write but wrote to x"
<< std::dec << write_reg;
errors.emplace_back(err_str.str());
return false;
}
if (!pc_is_load(pc, suppressed_write_reg)) {
std::stringstream err_str;
err_str << "Instruction at " << std::hex << pc
<< " indicated a suppressed register write is it not a load"
" only loads can suppress register writes";
errors.emplace_back(err_str.str());
return false;
}
return true;
}
void SpikeCosim::on_csr_write(const commit_log_reg_t::value_type &reg_change) {
int cosim_write_csr = (reg_change.first >> 4) & 0xfff;
// TODO: Investigate why this fails (may be because spike can produce PCs
// with high 32 bits set).
// assert((reg_change.second.v[0] & 0xffffffff00000000) == 0);
uint32_t cosim_write_csr_data = reg_change.second.v[0];
// Spike and Ibex have different WARL behaviours so after any CSR write
// check the fields and adjust to match Ibex behaviour.
fixup_csr(cosim_write_csr, cosim_write_csr_data);
}
void SpikeCosim::leave_nmi_mode() {
nmi_mode = false;
// Restore CSR status from mstack
uint32_t mstatus = processor->get_csr(CSR_MSTATUS);
mstatus = set_field(mstatus, MSTATUS_MPP, mstack.mpp);
mstatus = set_field(mstatus, MSTATUS_MPIE, mstack.mpie);
#ifdef OLD_SPIKE
processor->set_csr(CSR_MSTATUS, mstatus);
processor->set_csr(CSR_MEPC, mstack.epc);
processor->set_csr(CSR_MCAUSE, mstack.cause);
#else
processor->put_csr(CSR_MSTATUS, mstatus);
processor->put_csr(CSR_MEPC, mstack.epc);
processor->put_csr(CSR_MCAUSE, mstack.cause);
#endif
}
void SpikeCosim::handle_cpuctrl_exception_entry() {
if (!processor->get_state()->debug_mode) {
bool old_sync_exc_seen = change_cpuctrlsts_sync_exc_seen(true);
if (old_sync_exc_seen) {
set_cpuctrlsts_double_fault_seen();
}
}
}
bool SpikeCosim::change_cpuctrlsts_sync_exc_seen(bool flag) {
bool old_flag = false;
uint32_t cpuctrlsts = processor->get_csr(CSR_CPUCTRLSTS);
// If sync_exc_seen (bit 6) is already set update old_flag to match
if (cpuctrlsts & 0x40) {
old_flag = true;
}
cpuctrlsts = (cpuctrlsts & 0x1bf) | (flag ? 0x40 : 0);
processor->put_csr(CSR_CPUCTRLSTS, cpuctrlsts);
return old_flag;
}
void SpikeCosim::set_cpuctrlsts_double_fault_seen() {
uint32_t cpuctrlsts = processor->get_csr(CSR_CPUCTRLSTS);
// Set double_fault_seen (bit 7)
cpuctrlsts = (cpuctrlsts & 0x17f) | 0x80;
processor->put_csr(CSR_CPUCTRLSTS, cpuctrlsts);
}
void SpikeCosim::initial_proc_setup(uint32_t start_pc, uint32_t start_mtvec,
uint32_t mhpm_counter_num) {
processor->get_state()->pc = start_pc;
processor->get_state()->mtvec->write(start_mtvec);
processor->get_state()->csrmap[CSR_MARCHID] =
std::make_shared<const_csr_t>(processor.get(), CSR_MARCHID, IBEX_MARCHID);
processor->set_mmu_capability(IMPL_MMU_SBARE);
for (int i = 0; i < processor->TM.count(); ++i) {
processor->TM.tdata2_write(processor.get(), i, 0);
processor->TM.tdata1_write(processor.get(), i, 0x28001048);
}
for (int i = 0; i < mhpm_counter_num; i++) {
processor->get_state()->csrmap[CSR_MHPMEVENT3 + i] =
std::make_shared<const_csr_t>(processor.get(), CSR_MHPMEVENT3 + i,
1 << i);
}
}
void SpikeCosim::set_mip(uint32_t pre_mip, uint32_t post_mip) {
uint32_t new_mip = pre_mip;
uint32_t old_mip = processor->get_state()->mip->read();
processor->get_state()->mip->write_with_mask(0xffffffff, post_mip);
processor->get_state()->mip->write_pre_val(pre_mip);
if (processor->get_state()->debug_mode ||
(processor->halt_request == processor_t::HR_REGULAR) ||
(!get_field(processor->get_csr(CSR_MSTATUS), MSTATUS_MIE) &&
processor->get_state()->prv == PRV_M)) {
// Return now if new MIP won't trigger an interrupt handler either because
// we're in or heading to debug mode or interrupts are disabled.
return;
}
uint32_t old_enabled_irq = old_mip & processor->get_state()->mie->read();
uint32_t new_enabled_irq = new_mip & processor->get_state()->mie->read();
// Check to see if new MIP will trigger an interrupt (which occurs when new
// MIP produces an enabled interrupt for the first time).
if ((old_enabled_irq == 0) && (new_enabled_irq != 0)) {
// Early interrupt handle if the interrupt is triggered.
early_interrupt_handle();
}
}
void SpikeCosim::early_interrupt_handle() {
// Execute a spike step on the assumption an interrupt will occur so no new
// instruction is executed just the state altered to reflect the interrupt.
uint32_t initial_spike_pc = (processor->get_state()->pc & 0xffffffff);
processor->step(1);
if (processor->get_state()->last_inst_pc != PC_INVALID) {
std::stringstream err_str;
err_str << "Attempted step for interrupt, expecting no instruction would "
<< "be executed but saw one. PC before: " << std::hex
<< initial_spike_pc
<< " PC after: " << (processor->get_state()->pc & 0xffffffff);
errors.emplace_back(err_str.str());
}
}
// Ibex splits misaligned accesses into two separate requests. They
// independently undergo PMP access checks. It is possible for one to fail (so
// no request produced for that half of the access) whilst the other successed
// (producing a request for that half of the access).
//
// Spike splits misaligned accesses up into bytes and will apply PMP access
// checks byte by byte in a linear order. As soon as a byte sees a PMP
// permission failure the rest of the misaligned access is aborted.
//
// This results in mismatches as in some misaligned access cases Ibex will
// produce a request and spike will not.
//
// This fixup detects this condition and removes the Ibex access from
// pending_dside_accesses to avoid a mismatch. This removed access is checked
// against PMP using the spike MMU to check spike agrees it passes PMP checks.
//
// There may be a better way to handle this (e.g. altering spike behaviour to
// match Ibex) so for now a warning is generated in fixup cases so they can be
// easily identified.
void SpikeCosim::misaligned_pmp_fixup() {
if (pending_dside_accesses.size() != 0) {
auto &top_pending_access = pending_dside_accesses.front();
auto &top_pending_access_info = top_pending_access.dut_access_info;
// If top access is the second half of a misaligned access where the first
// half saw an error we have the PMP fixup case
if (top_pending_access_info.misaligned_second &&
top_pending_access_info.misaligned_first_saw_error) {
mmu_t *mmu = processor->get_mmu();
// Check if the second half of the access (which Ibex produces a request
// for and spike does not) passes PMP
if (!mmu->pmp_ok(top_pending_access_info.addr, 4,
top_pending_access_info.store ? STORE : LOAD,
top_pending_access_info.m_mode_access ? PRV_M : PRV_U)) {
// Raise an error if the second half shouldn't have passed PMP
std::stringstream err_str;
err_str << "Saw second half of a misaligned access which not have "
<< "generated a memory request as it does not pass a PMP check,"
<< " address: " << std::hex << top_pending_access_info.addr;
errors.emplace_back(err_str.str());
} else {
// Output warning on stdout so we're aware which tests this is happening
// in
std::cout << "WARNING: Cosim dropping second half of misaligned access "
<< "as first half saw an error and second half passed PMP "
<< "check, address: " << std::hex
<< top_pending_access_info.addr << std::endl;
std::cout << std::dec;
pending_dside_accesses.erase(pending_dside_accesses.begin());
}
}
}
}
void SpikeCosim::set_nmi(bool nmi) {
if (nmi && !nmi_mode && !processor->get_state()->debug_mode &&
processor->halt_request != processor_t::HR_REGULAR) {
processor->get_state()->nmi = true;
nmi_mode = true;
// When NMI is set it is guaranteed NMI trap will be taken at the next step
// so save CSR state for recoverable NMI to mstack now.
mstack.mpp = get_field(processor->get_csr(CSR_MSTATUS), MSTATUS_MPP);
mstack.mpie = get_field(processor->get_csr(CSR_MSTATUS), MSTATUS_MPIE);
mstack.epc = processor->get_csr(CSR_MEPC);
mstack.cause = processor->get_csr(CSR_MCAUSE);
early_interrupt_handle();
}
}
void SpikeCosim::set_nmi_int(bool nmi_int) {
if (nmi_int && !nmi_mode && !processor->get_state()->debug_mode &&
processor->halt_request != processor_t::HR_REGULAR) {
processor->get_state()->nmi_int = true;
nmi_mode = true;
// When NMI is set it is guaranteed NMI trap will be taken at the next step
// so save CSR state for recoverable NMI to mstack now.
mstack.mpp = get_field(processor->get_csr(CSR_MSTATUS), MSTATUS_MPP);
mstack.mpie = get_field(processor->get_csr(CSR_MSTATUS), MSTATUS_MPIE);
mstack.epc = processor->get_csr(CSR_MEPC);
mstack.cause = processor->get_csr(CSR_MCAUSE);
early_interrupt_handle();
}
}
void SpikeCosim::set_debug_req(bool debug_req) {
processor->halt_request =
debug_req ? processor_t::HR_REGULAR : processor_t::HR_NONE;
}
void SpikeCosim::set_mcycle(uint64_t mcycle) {
uint32_t upper_mcycle = mcycle >> 32;
uint32_t lower_mcycle = mcycle & 0xffffffff;
// Spike decrements the MCYCLE CSR when you write to it to hack around an
// issue it has with incorrectly setting minstret/mcycle when there's an
// explicit write to them. There's no backdoor write available via the public
// interface to skip this. To complicate matters we can only write 32 bits at
// a time and get a decrement each time.
// Write the lower half first, incremented twice due to the double decrement
processor->get_state()->csrmap[CSR_MCYCLE]->write(lower_mcycle + 2);
if ((processor->get_state()->csrmap[CSR_MCYCLE]->read() & 0xffffffff) == 0) {
// If the lower half is 0 at this point then the upper half will get
// decremented, so increment it first.
upper_mcycle++;
}
// Set the upper half
processor->get_state()->csrmap[CSR_MCYCLEH]->write(upper_mcycle);
// TODO: Do a neater job of this, a more recent spike release should allow us
// to write all 64 bits at once at least.
}
void SpikeCosim::set_csr(const int csr_num, const uint32_t new_val) {
// Note that this is tested with ibex-cosim-v0.3 version of Spike. 'set_csr'
// method might have a hardwired zero for mhpmcounterX registers.
#ifdef OLD_SPIKE
processor->set_csr(csr_num, new_val);
#else
processor->put_csr(csr_num, new_val);
#endif
}
void SpikeCosim::set_ic_scr_key_valid(bool valid) {
processor->set_ic_scr_key_valid(valid);
}
void SpikeCosim::notify_dside_access(const DSideAccessInfo &access_info) {
// Address must be 32-bit aligned
assert((access_info.addr & 0x3) == 0);
pending_dside_accesses.emplace_back(
PendingMemAccess{.dut_access_info = access_info, .be_spike = 0});
}
void SpikeCosim::set_iside_error(uint32_t addr) {
// Address must be 32-bit aligned
assert((addr & 0x3) == 0);
pending_iside_error = true;
pending_iside_err_addr = addr;
}
const std::vector<std::string> &SpikeCosim::get_errors() { return errors; }
void SpikeCosim::clear_errors() { errors.clear(); }
void SpikeCosim::fixup_csr(int csr_num, uint32_t csr_val) {
switch (csr_num) {
case CSR_MSTATUS: {
reg_t mask =
MSTATUS_MIE | MSTATUS_MPIE | MSTATUS_MPRV | MSTATUS_MPP | MSTATUS_TW;
reg_t new_val = csr_val & mask;
#ifdef OLD_SPIKE
processor->set_csr(csr_num, new_val);
#else
processor->put_csr(csr_num, new_val);
#endif
break;
}
case CSR_MCAUSE: {
uint32_t any_interrupt = csr_val & 0x80000000;
uint32_t int_interrupt = csr_val & 0x40000000;
reg_t new_val = (csr_val & 0x0000001f) | any_interrupt;
if (any_interrupt && int_interrupt) {
new_val |= 0x7fffffe0;
}
#ifdef OLD_SPIKE
processor->set_csr(csr_num, new_val);
#else
processor->put_csr(csr_num, new_val);
#endif
break;
}
case CSR_MTVEC: {
uint32_t mtvec_and_mask = 0xffffff00;
uint32_t mtvec_or_mask = 0x1;
// For Ibex, mtvec.MODE is set to vectored and
// mtvec.BASE must be 256-byte aligned
reg_t new_val = (csr_val & mtvec_and_mask) | mtvec_or_mask;
#ifdef OLD_SPIKE
processor->set_csr(csr_num, new_val);
#else
processor->put_csr(csr_num, new_val);
#endif
break;
}
case CSR_MISA: {
// For Ibex, misa is hardwired
reg_t new_val = 0x40901104;
#ifdef OLD_SPIKE
processor->set_csr(csr_num, new_val);
#else
processor->put_csr(csr_num, new_val);
#endif
break;
}
}
}
SpikeCosim::check_mem_result_e SpikeCosim::check_mem_access(
bool store, uint32_t addr, size_t len, const uint8_t *bytes) {
assert(len >= 1 && len <= 4);
// Expect that no spike memory accesses cross a 32-bit boundary
assert(((addr + (len - 1)) & 0xfffffffc) == (addr & 0xfffffffc));
std::string iss_action = store ? "store" : "load";
// Check if there are any pending DUT accesses to check against
if (pending_dside_accesses.size() == 0) {
std::stringstream err_str;
err_str << "A " << iss_action << " at address " << std::hex << addr
<< " was expected but there are no pending accesses";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
auto &top_pending_access = pending_dside_accesses.front();
auto &top_pending_access_info = top_pending_access.dut_access_info;
std::string dut_action = top_pending_access_info.store ? "store" : "load";
// Check for an address match
uint32_t aligned_addr = addr & 0xfffffffc;
if (aligned_addr != top_pending_access_info.addr) {
std::stringstream err_str;
err_str << "DUT generated " << dut_action << " at address " << std::hex
<< top_pending_access_info.addr << " but " << iss_action
<< " at address " << aligned_addr << " was expected";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// Check access type match
if (store != top_pending_access_info.store) {
std::stringstream err_str;
err_str << "DUT generated " << dut_action << " at addr " << std::hex
<< top_pending_access_info.addr << " but a " << iss_action
<< " was expected";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// Calculate bytes within aligned 32-bit word that spike has accessed
uint32_t expected_be = ((1 << len) - 1) << (addr & 0x3);
bool pending_access_done = false;
bool misaligned = top_pending_access_info.misaligned_first ||
top_pending_access_info.misaligned_second;
if (misaligned) {
// For misaligned accesses spike will generated multiple single byte
// accesses where the DUT will generate an access covering all bytes within
// an aligned 32-bit word.
// Check bytes accessed this time haven't already been been seen for the DUT
// access we are trying to match against
if ((expected_be & top_pending_access.be_spike) != 0) {
std::stringstream err_str;
err_str << "DUT generated " << dut_action << " at address " << std::hex
<< top_pending_access_info.addr << " with BE "
<< top_pending_access_info.be << " and expected BE "
<< expected_be << " has been seen twice, so far seen "
<< top_pending_access.be_spike;
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// Check expected access isn't trying to access bytes that the DUT access
// didn't access.
if ((expected_be & ~top_pending_access_info.be) != 0) {
std::stringstream err_str;
err_str << "DUT generated " << dut_action << " at address " << std::hex
<< top_pending_access_info.addr << " with BE "
<< top_pending_access_info.be << " but expected BE "
<< expected_be << " has other bytes enabled";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// Record which bytes have been seen from spike
top_pending_access.be_spike |= expected_be;
// If all bytes have been seen from spike we're done with this DUT access
if (top_pending_access.be_spike == top_pending_access_info.be) {
pending_access_done = true;
}
} else {
// For aligned accesses bytes from spike access must precisely match bytes
// from DUT access in one go
if (expected_be != top_pending_access_info.be) {
std::stringstream err_str;
err_str << "DUT generated " << dut_action << " at address " << std::hex
<< top_pending_access_info.addr << " with BE "
<< top_pending_access_info.be << " but BE " << expected_be
<< " was expected";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
pending_access_done = true;
}
// Check data from expected access matches pending DUT access.
// Data is ignored on error responses to loads so don't check it. Always check
// store data.
if (store || !top_pending_access_info.error) {
// Combine bytes into a single word
uint32_t expected_data = 0;
for (int i = 0; i < len; ++i) {
expected_data |= bytes[i] << (i * 8);
}
// Shift bytes into their position within an aligned 32-bit word
expected_data <<= (addr & 0x3) * 8;
// Mask off bytes expected access doesn't touch and check bytes match for
// those that it does
uint32_t expected_be_bits = (((uint64_t)1 << (len * 8)) - 1)
<< ((addr & 0x3) * 8);
uint32_t masked_dut_data = top_pending_access_info.data & expected_be_bits;
if (expected_data != masked_dut_data) {
std::stringstream err_str;
err_str << "DUT generated " << iss_action << " at address " << std::hex
<< top_pending_access_info.addr << " with data "
<< masked_dut_data << " but data " << expected_data
<< " was expected with byte mask " << expected_be;
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
}
bool pending_access_error = top_pending_access_info.error;
if (pending_access_error && misaligned) {
// When misaligned accesses see an error, if they have crossed a 32-bit
// boundary DUT will generate two accesses. If the top pending access from
// the DUT was the first half of a misaligned access which accesses the top
// byte, it must have crossed the 32-bit boundary and generated a second
// access
if (top_pending_access_info.misaligned_first &&
((top_pending_access_info.be & 0x8) != 0)) {
// Check the second access DUT exists
if ((pending_dside_accesses.size() < 2) ||
!pending_dside_accesses[1].dut_access_info.misaligned_second) {
std::stringstream err_str;
err_str << "DUT generated first half of misaligned " << iss_action
<< " at address " << std::hex << top_pending_access_info.addr
<< " but second half was expected and not seen";
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// Check the second access had the expected address
if (pending_dside_accesses[1].dut_access_info.addr !=
(top_pending_access_info.addr + 4)) {
std::stringstream err_str;
err_str << "DUT generated first half of misaligned " << iss_action
<< " at address " << std::hex << top_pending_access_info.addr
<< " but second half had incorrect address "
<< pending_dside_accesses[1].dut_access_info.addr;
errors.emplace_back(err_str.str());
return kCheckMemCheckFailed;
}
// TODO: How to check BE? May need length of transaction?
// Remove the top pending access now so both the first and second DUT
// accesses for this misaligned access are removed.
pending_dside_accesses.erase(pending_dside_accesses.begin());
}
// For any misaligned access that sees an error immediately indicate to
// spike the error has occured, so ensure the top pending access gets
// removed.
pending_access_done = true;
}
if (pending_access_done) {
pending_dside_accesses.erase(pending_dside_accesses.begin());
}
return pending_access_error ? kCheckMemBusError : kCheckMemOk;
}
bool SpikeCosim::pc_is_mret(uint32_t pc) {
uint32_t insn;
if (!backdoor_read_mem(pc, 4, reinterpret_cast<uint8_t *>(&insn))) {
return false;
}
return insn == 0x30200073;
}
bool SpikeCosim::pc_is_debug_ebreak(uint32_t pc) {
uint32_t dcsr = processor->get_csr(CSR_DCSR);
// ebreak debug entry is controlled by the ebreakm (bit 15) and ebreaku (bit
// 12) fields of DCSR. If the appropriate bit of the current privlege level
// isn't set ebreak won't enter debug so return false.
if ((processor->get_state()->prv == PRV_M) && ((dcsr & 0x1000) == 0) ||
(processor->get_state()->prv == PRV_U) && ((dcsr & 0x8000) == 0)) {
return false;
}
// First check for 16-bit c.ebreak
uint16_t insn_16;
if (!backdoor_read_mem(pc, 2, reinterpret_cast<uint8_t *>(&insn_16))) {
return false;
}
if (insn_16 == 0x9002) {
return true;
}
// Not a c.ebreak, check for 32 bit ebreak
uint32_t insn_32;
if (!backdoor_read_mem(pc, 4, reinterpret_cast<uint8_t *>(&insn_32))) {
return false;
}
return insn_32 == 0x00100073;
}
bool SpikeCosim::check_debug_ebreak(uint32_t write_reg, uint32_t pc,
bool sync_trap) {
// A ebreak from the DUT should not write a register and will be reported as a
// 'sync_trap' (though doesn't act like a trap in various respects).
if (write_reg != 0) {
std::stringstream err_str;
err_str << "DUT executed ebreak at " << std::hex << pc
<< " but also wrote register x" << std::dec << write_reg
<< " which was unexpected";
errors.emplace_back(err_str.str());
return false;
}
if (sync_trap) {
std::stringstream err_str;
err_str << "DUT executed ebreak into debug at " << std::hex << pc
<< " but indicated a synchronous trap, which was unexpected";
errors.emplace_back(err_str.str());
return false;
}
return true;
}
bool SpikeCosim::pc_is_load(uint32_t pc, uint32_t &rd_out) {
uint16_t insn_16;
if (!backdoor_read_mem(pc, 2, reinterpret_cast<uint8_t *>(&insn_16))) {
return false;
}
// C.LW
if ((insn_16 & 0xE003) == 0x4000) {
rd_out = ((insn_16 >> 2) & 0x7) + 8;
return true;
}
// C.LWSP
if ((insn_16 & 0xE003) == 0x4002) {
rd_out = (insn_16 >> 7) & 0x1F;
return rd_out != 0;
}
uint16_t insn_32;
if (!backdoor_read_mem(pc, 4, reinterpret_cast<uint8_t *>(&insn_32))) {
return false;
}
// LB/LH/LW/LBU/LHU
if ((insn_32 & 0x7F) == 0x3) {
uint32_t func = (insn_32 >> 12) & 0x7;
if ((func == 0x3) || (func == 0x6) || (func == 0x7)) {
// Not valid load encodings
return false;
}
rd_out = (insn_32 >> 7) & 0x1F;
return true;
}
return false;
}
unsigned int SpikeCosim::get_insn_cnt() { return insn_cnt; }