ibex/zeroriscy_tracer.sv
Pasquale Davide Schiavone b018eb434e fixed header
2017-08-29 12:27:59 +02:00

444 lines
No EOL
14 KiB
Systemverilog

// Copyright 2017 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the “License”); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// Engineer: Andreas Traber - atraber@iis.ee.ethz.ch //
// //
// Additional contributions by: //
// Davide Schiavone - pschiavo@iis.ee.ethz.ch //
// //
// Design Name: RISC-V Tracer //
// Project Name: zero-riscy //
// Language: SystemVerilog //
// //
// Description: Traces the executed instructions //
// //
////////////////////////////////////////////////////////////////////////////////
`ifndef VERILATOR
`include "zeroriscy_config.sv"
import zeroriscy_defines::*;
import zeroriscy_tracer_defines::*;
// Source/Destination register instruction index
`define REG_S1 19:15
`define REG_S2 24:20
`define REG_S3 29:25
`define REG_D 11:07
module zeroriscy_tracer
#(
parameter REG_ADDR_WIDTH = 5
)
(
// Clock and Reset
input logic clk,
input logic rst_n,
input logic fetch_enable,
input logic [3:0] core_id,
input logic [5:0] cluster_id,
input logic [31:0] pc,
input logic [31:0] instr,
input logic compressed,
input logic id_valid,
input logic is_decoding,
input logic is_branch,
input logic branch_taken,
input logic pipe_flush,
input logic mret_insn,
input logic ecall_insn,
input logic ebrk_insn,
input logic csr_status,
input logic [31:0] rs1_value,
input logic [31:0] rs2_value,
input logic [31:0] lsu_value,
input logic [(REG_ADDR_WIDTH-1):0] ex_reg_addr,
input logic ex_reg_we,
input logic [31:0] ex_reg_wdata,
input logic data_valid_lsu,
input logic ex_data_req,
input logic ex_data_gnt,
input logic ex_data_we,
input logic [31:0] ex_data_addr,
input logic [31:0] ex_data_wdata,
input logic [31:0] lsu_reg_wdata,
input logic [31:0] imm_u_type,
input logic [31:0] imm_uj_type,
input logic [31:0] imm_i_type,
input logic [11:0] imm_iz_type,
input logic [31:0] imm_z_type,
input logic [31:0] imm_s_type,
input logic [31:0] imm_sb_type
);
integer f;
string fn;
integer cycles;
logic [ 4:0] rd, rs1, rs2, rs3;
typedef struct {
logic [(REG_ADDR_WIDTH-1):0] addr;
logic [31:0] value;
} reg_t;
typedef struct {
logic [31:0] addr;
logic we;
logic [ 3:0] be;
logic [31:0] wdata;
logic [31:0] rdata;
} mem_acc_t;
class instr_trace_t;
time simtime;
integer cycles;
logic [31:0] pc;
logic [31:0] instr;
string str;
reg_t regs_read[$];
reg_t regs_write[$];
mem_acc_t mem_access[$];
function new ();
str = "";
regs_read = {};
regs_write = {};
mem_access = {};
endfunction
function string regAddrToStr(input logic [(REG_ADDR_WIDTH-1):0] addr);
begin
if (addr < 10)
return $sformatf(" x%0d", addr);
else
return $sformatf("x%0d", addr);
end
endfunction
function void printInstrTrace();
mem_acc_t mem_acc;
begin
$fwrite(f, "%t %15d %h %h %-36s", simtime,
cycles,
pc,
instr,
str);
foreach(regs_write[i]) begin
if (regs_write[i].addr != 0)
$fwrite(f, " %s=%08x", regAddrToStr(regs_write[i].addr), regs_write[i].value);
end
foreach(regs_read[i]) begin
if (regs_read[i].addr != 0)
$fwrite(f, " %s:%08x", regAddrToStr(regs_read[i].addr), regs_read[i].value);
end
if (mem_access.size() > 0) begin
mem_acc = mem_access.pop_front();
$fwrite(f, " PA:%08x", mem_acc.addr);
end
$fwrite(f, "\n");
end
endfunction
function void printMnemonic(input string mnemonic);
begin
str = mnemonic;
end
endfunction // printMnemonic
function void printRInstr(input string mnemonic);
begin
regs_read.push_back('{rs1, rs1_value});
regs_read.push_back('{rs2, rs2_value});
regs_write.push_back('{rd, 'x});
str = $sformatf("%-16s x%0d, x%0d, x%0d", mnemonic, rd, rs1, rs2);
end
endfunction // printRInstr
function void printIInstr(input string mnemonic);
begin
regs_read.push_back('{rs1, rs1_value});
regs_write.push_back('{rd, 'x});
str = $sformatf("%-16s x%0d, x%0d, %0d", mnemonic, rd, rs1, $signed(imm_i_type));
end
endfunction // printIInstr
function void printIuInstr(input string mnemonic);
begin
regs_read.push_back('{rs1, rs1_value});
regs_write.push_back('{rd, 'x});
str = $sformatf("%-16s x%0d, x%0d, 0x%0x", mnemonic, rd, rs1, imm_i_type);
end
endfunction // printIuInstr
function void printUInstr(input string mnemonic);
begin
regs_write.push_back('{rd, 'x});
str = $sformatf("%-16s x%0d, 0x%0h", mnemonic, rd, {imm_u_type[31:12], 12'h000});
end
endfunction // printUInstr
function void printUJInstr(input string mnemonic);
begin
regs_write.push_back('{rd, 'x});
str = $sformatf("%-16s x%0d, %0d", mnemonic, rd, $signed(imm_uj_type));
end
endfunction // printUJInstr
function void printSBInstr(input string mnemonic);
begin
regs_read.push_back('{rs1, rs1_value});
regs_read.push_back('{rs2, rs2_value});
str = $sformatf("%-16s x%0d, x%0d, %0d", mnemonic, rs1, rs2, $signed(imm_sb_type));
end
endfunction // printSBInstr
function void printCSRInstr(input string mnemonic);
logic [11:0] csr;
begin
csr = instr[31:20];
regs_write.push_back('{rd, 'x});
if (instr[14] == 1'b0) begin
regs_read.push_back('{rs1, rs1_value});
str = $sformatf("%-16s x%0d, x%0d, 0x%h", mnemonic, rd, rs1, csr);
end else begin
str = $sformatf("%-16s x%0d, 0x%h, 0x%h", mnemonic, rd, imm_z_type, csr);
end
end
endfunction // printCSRInstr
function void printLoadInstr();
string mnemonic;
logic [2:0] size;
begin
// detect reg-reg load and find size
size = instr[14:12];
if (instr[14:12] == 3'b111)
size = instr[30:28];
case (size)
3'b000: mnemonic = "lb";
3'b001: mnemonic = "lh";
3'b010: mnemonic = "lw";
3'b100: mnemonic = "lbu";
3'b101: mnemonic = "lhu";
3'b110: mnemonic = "p.elw";
3'b011,
3'b111: begin
printMnemonic("INVALID");
return;
end
endcase
regs_write.push_back('{rd, 'x});
if (instr[14:12] != 3'b111) begin
// regular load
regs_read.push_back('{rs1, rs1_value});
str = $sformatf("%-16s x%0d, %0d(x%0d)", mnemonic, rd, $signed(imm_i_type), rs1);
end else begin
printMnemonic("INVALID");
end
end
endfunction
function void printStoreInstr();
string mnemonic;
begin
case (instr[13:12])
2'b00: mnemonic = "sb";
2'b01: mnemonic = "sh";
2'b10: mnemonic = "sw";
2'b11: begin
printMnemonic("INVALID");
return;
end
endcase
if (instr[14] == 1'b0) begin
// regular store
regs_read.push_back('{rs2, rs2_value});
regs_read.push_back('{rs1, rs1_value});
str = $sformatf("%-16s x%0d, %0d(x%0d)", mnemonic, rs2, $signed(imm_s_type), rs1);
end else begin
printMnemonic("INVALID");
end
end
endfunction // printSInstr
endclass
mailbox #(instr_trace_t) instr_ex = new ();
mailbox #(instr_trace_t) instr_wb = new ();
// cycle counter
always_ff @(posedge clk, negedge rst_n)
begin
if (rst_n == 1'b0)
cycles = 0;
else
cycles = cycles + 1;
end
// open/close output file for writing
initial
begin
wait(rst_n == 1'b1);
wait(fetch_enable == 1'b1);
$sformat(fn, "trace_core_%h_%h.log", cluster_id, core_id);
$display("[TRACER] Output filename is: %s", fn);
f = $fopen(fn, "w");
$fwrite(f, " Time Cycles PC Instr Mnemonic\n");
end
final
begin
$fclose(f);
end
assign rd = instr[`REG_D];
assign rs1 = instr[`REG_S1];
assign rs2 = instr[`REG_S2];
assign rs3 = instr[`REG_S3];
// log execution
always @(negedge clk)
begin
instr_trace_t trace;
mem_acc_t mem_acc;
// special case for WFI because we don't wait for unstalling there
if ( (id_valid || mret_insn || ecall_insn || pipe_flush || ebrk_insn || csr_status || ex_data_req) && is_decoding)
begin
trace = new ();
trace.simtime = $time;
trace.cycles = cycles;
trace.pc = pc;
trace.instr = instr;
// use casex instead of case inside due to ModelSim bug
casex (instr)
// Aliases
32'h00_00_00_13: trace.printMnemonic("nop");
// Regular opcodes
INSTR_LUI: trace.printUInstr("lui");
INSTR_AUIPC: trace.printUInstr("auipc");
INSTR_JAL: trace.printUJInstr("jal");
INSTR_JALR: trace.printIInstr("jalr");
// BRANCH
INSTR_BEQ: trace.printSBInstr("beq");
INSTR_BNE: trace.printSBInstr("bne");
INSTR_BLT: trace.printSBInstr("blt");
INSTR_BGE: trace.printSBInstr("bge");
INSTR_BLTU: trace.printSBInstr("bltu");
INSTR_BGEU: trace.printSBInstr("bgeu");
// OPIMM
INSTR_ADDI: trace.printIInstr("addi");
INSTR_SLTI: trace.printIInstr("slti");
INSTR_SLTIU: trace.printIInstr("sltiu");
INSTR_XORI: trace.printIInstr("xori");
INSTR_ORI: trace.printIInstr("ori");
INSTR_ANDI: trace.printIInstr("andi");
INSTR_SLLI: trace.printIuInstr("slli");
INSTR_SRLI: trace.printIuInstr("srli");
INSTR_SRAI: trace.printIuInstr("srai");
// OP
INSTR_ADD: trace.printRInstr("add");
INSTR_SUB: trace.printRInstr("sub");
INSTR_SLL: trace.printRInstr("sll");
INSTR_SLT: trace.printRInstr("slt");
INSTR_SLTU: trace.printRInstr("sltu");
INSTR_XOR: trace.printRInstr("xor");
INSTR_SRL: trace.printRInstr("srl");
INSTR_SRA: trace.printRInstr("sra");
INSTR_OR: trace.printRInstr("or");
INSTR_AND: trace.printRInstr("and");
// SYSTEM (CSR manipulation)
INSTR_CSRRW: trace.printCSRInstr("csrrw");
INSTR_CSRRS: trace.printCSRInstr("csrrs");
INSTR_CSRRC: trace.printCSRInstr("csrrc");
INSTR_CSRRWI: trace.printCSRInstr("csrrwi");
INSTR_CSRRSI: trace.printCSRInstr("csrrsi");
INSTR_CSRRCI: trace.printCSRInstr("csrrci");
// SYSTEM (others)
INSTR_ECALL: trace.printMnemonic("ecall");
INSTR_EBREAK: trace.printMnemonic("ebreak");
INSTR_MRET: trace.printMnemonic("mret");
INSTR_WFI: trace.printMnemonic("wfi");
// RV32M
INSTR_PMUL: trace.printRInstr("mul");
INSTR_PMUH: trace.printRInstr("mulh");
INSTR_PMULHSU: trace.printRInstr("mulhsu");
INSTR_PMULHU: trace.printRInstr("mulhu");
INSTR_DIV: trace.printRInstr("div");
INSTR_DIVU: trace.printRInstr("divu");
INSTR_REM: trace.printRInstr("rem");
INSTR_REMU: trace.printRInstr("remu");
{25'b?, OPCODE_LOAD}: trace.printLoadInstr();
{25'b?, OPCODE_STORE}: trace.printStoreInstr();
default: trace.printMnemonic("INVALID");
endcase // unique case (instr)
// replace register written back
foreach(trace.regs_write[i]) begin
if ((trace.regs_write[i].addr == ex_reg_addr) && ex_reg_we)
trace.regs_write[i].value = ex_reg_wdata;
end
// look for data accesses and log them
if (ex_data_req) begin
if(~ex_data_gnt) begin
//we wait until the the gnt comes
do @(negedge clk);
while (!ex_data_gnt);
end
mem_acc.addr = ex_data_addr;
mem_acc.we = ex_data_we;
if (mem_acc.we)
mem_acc.wdata = ex_data_wdata;
else
mem_acc.wdata = 'x;
//we wait until the the data instruction ends
do @(negedge clk);
while (!data_valid_lsu);
if (~mem_acc.we)
//load operations
foreach(trace.regs_write[i])
trace.regs_write[i].value = lsu_reg_wdata;
trace.mem_access.push_back(mem_acc);
end
trace.printInstrTrace();
end
end // always @ (posedge clk)
endmodule
`endif