ibex/lint
ganoam 8a26111f40 [bitmanip] Add ZBB Instruction Group
This commit implements the Bit Manipulation Extension ZBB instruction
group: clz, ctz, pcnt, slo, sro, rol, ror, rev, rev8, orcb, pack
packu, packh, min, max, andn, orn, and xnor.

* Bit counting instructions clz, ctz and pcnt can be implemented to
        share much of the architecture:

        clz: Count Leading Zeros. Counts the number of 0 bits at the
                MSB end of the argument.
        ctz: Count Trailing Zeros. Counts the number of 0 bits at the
                LSB end of the argument.
        pcnt: Counts the number of set bits of the argument.

        The implementation uses:

        - 32 one bit adders, counting the set bits of a signal
                bitcnt_bits, starting from the LSB end.

        - For pcnt the argument is fed directly into bitcnt_bits.

        - For clz, the operand is reversed such that leading zeros are
                located at the LSB end of bitcnt_bits.

        - For ctz and clz: counter enable signal for 1-bit counter i
                is high, if the previous enable signal, and
                its corresponting bitcnt_bit was high.

* Instructions sll[i], srl[i],slo[i], sro[i], rol, ror[i], rev, rev8
        and orc.b are summarized as shifting instructions and related:

        The following instructions are slight variations of the
        existing base spec's sll, srl and sra instructions.

        - slo[i] and sro[i]: shift left/right ones: similar to
                shift-logical operations from base spec, but shifting
                in ones instead of zeros.

        - rol and ror[i]: rotate left/right ones: circular shift
                operations. shifting in values from the oposite end
                of the operand instead of zeros.

        Those instructions can be implemented, sharing the base spec's
        shifting structure. In order to support rotate operations, a
        64-bit shifting structure is needed.

        In the existing ALU, hardware is described only for right
        shifts. For left shifts the operand is initially reversed,
        right shifted and the result is reversed back. This gives rise
        to an additional resource sharing oportunity for some more
        zbb operations:

        - rev: bitwise reversal.

        - rev8: byte-order swap.

        - orc.b: byte-wise reverse and or-combine.

* Instructions min, max:
        For the B-extension's min/max instructions, we can share the
        existing comparison operations. The result is obtained by
        activating the comparison structure accordingly and
        multiplexing the operands using the comparison result.

* Logic-with-negate instructions andn, orn, xnor:
        For the B-extension's logic-with-negate instructions we can
        share the structures of the base spec's logic structures
        already present for 'xnor', 'or' and 'and' instructions as
        well as the conditionally negated b operand generated for
        subtraction operations.

* Instructions pack, packu, packh:
        For the pack, packh and packu instructions I don't see any
        opportunities for resource sharing. However, the architecture
        is quite simple.

        - pack: pack the lower halves of rs1 and rs2 into rd, with rs1
                in the lower half and rs2 in the upper half.

        - packu: pack the upper halves of rs1 and rs2 into rd, with
                rs1 in the lower half and rs2 in the upper half.

        - packh: pack the LSB bytes of rs1 and rs2 into rd, with rs1
                in the lower half and rs2 in the upper half.

Signed-off-by: ganoam <gnoam@live.com>
2020-03-27 17:13:26 +01:00
..
verilator_waiver.vlt [bitmanip] Add ZBB Instruction Group 2020-03-27 17:13:26 +01:00