ibex/decoder.sv
Andreas Traber a15f007d46 Change to new encoding from Eric
This changes the way mac and mul are handled and moves the rs3 register
for mac operations.
When rs3 is not used, the register file port is now silenced
2016-01-21 13:08:16 +01:00

685 lines
26 KiB
Systemverilog

// Copyright 2015 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the “License”); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// Engineer Andreas Traber - atraber@iis.ee.ethz.ch //
// //
// Additional contributions by: //
// Matthias Baer - baermatt@student.ethz.ch //
// Igor Loi - igor.loi@unibo.it //
// Sven Stucki - svstucki@student.ethz.ch //
// //
// Design Name: Decoder //
// Project Name: RI5CY //
// Language: SystemVerilog //
// //
// Description: Decoder //
// //
////////////////////////////////////////////////////////////////////////////////
`include "riscv_defines.sv"
module riscv_decoder
(
// singals running to/from controller
input logic deassert_we_i, // deassert we, we are stalled or not active
input logic data_misaligned_i, // misaligned data load/store in progress
output logic illegal_insn_o, // illegal instruction encountered
output logic trap_insn_o, // trap instruction encountered
output logic eret_insn_o, // return from exception instruction encountered
output logic ecall_insn_o, // environment call (syscall) instruction encountered
output logic pipe_flush_o, // pipeline flush is requested
output logic rega_used_o, // rs1 is used by current instruction
output logic regb_used_o, // rs2 is used by current instruction
output logic regc_used_o, // rs3 is used by current instruction
// from IF/ID pipeline
input logic [31:0] instr_rdata_i, // instruction read from instr memory/cache
input logic illegal_c_insn_i, // compressed instruction decode failed
// ALU signals
output logic [`ALU_OP_WIDTH-1:0] alu_operator_o, // ALU operation selection
output logic [1:0] alu_op_a_mux_sel_o, // operand a selection: reg value, PC, immediate or zero
output logic [1:0] alu_op_b_mux_sel_o, // operand b selection: reg value or immediate
output logic [1:0] alu_op_c_mux_sel_o, // operand c selection: reg value or jump target
output logic [2:0] immediate_mux_sel_o, // immediate selection for operand b
output logic [1:0] regc_mux_o, // register c selection: S3, RD or 0
output logic vector_mode_o, // selects between 32 bit, 16 bit and 8 bit vectorial modes
// MUL related control signals
output logic mult_en_o, // perform multiplication
output logic mult_mac_en_o, // accumulate multiplication result
output logic [1:0] mult_sel_subword_o, // Select subwords for 16x16 bit of multiplier
output logic [1:0] mult_signed_mode_o, // Multiplication in signed mode
// register file related signals
output logic regfile_mem_we_o, // write enable for regfile
output logic regfile_alu_we_o, // write enable for 2nd regfile port
output logic regfile_alu_waddr_sel_o, // Select register write address for ALU/MUL operations
// CSR manipulation
output logic csr_access_o, // access to CSR
output logic [1:0] csr_op_o, // operation to perform on CSR
// LD/ST unit signals
output logic data_req_o, // start transaction to data memory
output logic data_we_o, // data memory write enable
output logic prepost_useincr_o, // when not active bypass the alu result for address calculation
output logic [1:0] data_type_o, // data type on data memory: byte, half word or word
output logic data_sign_extension_o, // sign extension on read data from data memory
output logic [1:0] data_reg_offset_o, // offset in byte inside register for stores
// hwloop signals
output logic [2:0] hwloop_we_o, // write enable for hwloop regs
output logic hwloop_target_mux_sel_o, // selects immediate for hwloop target
output logic hwloop_start_mux_sel_o, // selects hwloop start address input
output logic hwloop_cnt_mux_sel_o, // selects hwloop counter input
// jump/branches
output logic [1:0] jump_in_dec_o, // jump_in_id without deassert
output logic [1:0] jump_in_id_o, // jump is being calculated in ALU
output logic [1:0] jump_target_mux_sel_o // jump target selection
);
// write enable/request control
logic regfile_mem_we;
logic regfile_alu_we;
logic data_req;
logic [2:0] hwloop_we;
logic trap_insn;
logic eret_insn;
logic pipe_flush;
logic [1:0] jump_in_id;
logic [`ALU_OP_WIDTH-1:0] alu_operator;
logic mult_en;
logic mult_mac_en;
logic [1:0] csr_op;
/////////////////////////////////////////////
// ____ _ //
// | _ \ ___ ___ ___ __| | ___ _ __ //
// | | | |/ _ \/ __/ _ \ / _` |/ _ \ '__| //
// | |_| | __/ (_| (_) | (_| | __/ | //
// |____/ \___|\___\___/ \__,_|\___|_| //
// //
/////////////////////////////////////////////
always_comb
begin
jump_in_id = `BRANCH_NONE;
jump_target_mux_sel_o = `JT_JAL;
alu_operator = `ALU_NOP;
alu_op_a_mux_sel_o = `OP_A_REGA_OR_FWD;
alu_op_b_mux_sel_o = `OP_B_REGB_OR_FWD;
alu_op_c_mux_sel_o = `OP_C_REGC_OR_FWD;
regc_mux_o = `REGC_ZERO;
immediate_mux_sel_o = `IMM_I;
vector_mode_o = 1'b0;
mult_en = 1'b0;
mult_signed_mode_o = 2'b00;
mult_sel_subword_o = 2'b00;
mult_mac_en = 1'b0;
regfile_mem_we = 1'b0;
regfile_alu_we = 1'b0;
regfile_alu_waddr_sel_o = 1'b1;
prepost_useincr_o = 1'b1;
hwloop_we = 3'b0;
hwloop_target_mux_sel_o = 1'b0;
hwloop_start_mux_sel_o = 1'b0;
hwloop_cnt_mux_sel_o = 1'b0;
csr_access_o = 1'b0;
csr_op = `CSR_OP_NONE;
data_we_o = 1'b0;
data_type_o = 2'b00;
data_sign_extension_o = 1'b0;
data_reg_offset_o = 2'b00;
data_req = 1'b0;
illegal_insn_o = 1'b0;
trap_insn = 1'b0;
eret_insn = 1'b0;
ecall_insn_o = 1'b0;
pipe_flush = 1'b0;
rega_used_o = 1'b0;
regb_used_o = 1'b0;
regc_used_o = 1'b0;
unique case (instr_rdata_i[6:0])
//////////////////////////////////////
// _ _ _ __ __ ____ ____ //
// | | | | | \/ | _ \/ ___| //
// _ | | | | | |\/| | |_) \___ \ //
// | |_| | |_| | | | | __/ ___) | //
// \___/ \___/|_| |_|_| |____/ //
// //
//////////////////////////////////////
`OPCODE_JAL: begin // Jump and Link
jump_target_mux_sel_o = `JT_JAL;
jump_in_id = `BRANCH_JAL;
// Calculate and store PC+4
alu_op_a_mux_sel_o = `OP_A_CURRPC;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_PCINCR;
alu_operator = `ALU_ADD;
regfile_alu_we = 1'b1;
// Calculate jump target (= PC + UJ imm)
end
`OPCODE_JALR: begin // Jump and Link Register
jump_target_mux_sel_o = `JT_JALR;
jump_in_id = `BRANCH_JALR;
// Calculate and store PC+4
alu_op_a_mux_sel_o = `OP_A_CURRPC;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_PCINCR;
alu_operator = `ALU_ADD;
regfile_alu_we = 1'b1;
// Calculate jump target (= RS1 + I imm)
rega_used_o = 1'b1;
if (instr_rdata_i[14:12] != 3'b0) begin
jump_in_id = `BRANCH_NONE;
regfile_alu_we = 1'b0;
illegal_insn_o = 1'b0;
end
end
`OPCODE_BRANCH: begin // Branch
jump_target_mux_sel_o = `JT_COND;
jump_in_id = `BRANCH_COND;
alu_op_c_mux_sel_o = `OP_C_JT;
rega_used_o = 1'b1;
regb_used_o = 1'b1;
unique case (instr_rdata_i[14:12])
3'b000: alu_operator = `ALU_EQ;
3'b001: alu_operator = `ALU_NE;
3'b100: alu_operator = `ALU_LTS;
3'b101: alu_operator = `ALU_GES;
3'b110: alu_operator = `ALU_LTU;
3'b111: alu_operator = `ALU_GEU;
default: begin
illegal_insn_o = 1'b1;
end
endcase
end
//////////////////////////////////
// _ ____ ______ _____ //
// | | | _ \ / / ___|_ _| //
// | | | | | |/ /\___ \ | | //
// | |___| |_| / / ___) || | //
// |_____|____/_/ |____/ |_| //
// //
//////////////////////////////////
`OPCODE_STORE,
`OPCODE_STORE_POST: begin
data_req = 1'b1;
data_we_o = 1'b1;
rega_used_o = 1'b1;
regb_used_o = 1'b1;
alu_operator = `ALU_ADD;
// pass write data through ALU operand c
alu_op_c_mux_sel_o = `OP_C_REGB_OR_FWD;
// post-increment setup
if (instr_rdata_i[6:0] == `OPCODE_STORE_POST) begin
prepost_useincr_o = 1'b0;
regfile_alu_waddr_sel_o = 1'b0;
regfile_alu_we = 1'b1;
end
if (instr_rdata_i[14] == 1'b0) begin
// offset from immediate
immediate_mux_sel_o = `IMM_S;
alu_op_b_mux_sel_o = `OP_B_IMM;
end else begin
// offset from register
regc_used_o = 1'b1;
alu_op_b_mux_sel_o = `OP_B_REGC_OR_FWD;
regc_mux_o = `REGC_S3;
end
// store size
unique case (instr_rdata_i[13:12])
2'b00: data_type_o = 2'b10; // SB
2'b01: data_type_o = 2'b01; // SH
2'b10: data_type_o = 2'b00; // SW
default: begin
data_req = 1'b0;
data_we_o = 1'b0;
illegal_insn_o = 1'b1;
end
endcase
end
`OPCODE_LOAD,
`OPCODE_LOAD_POST: begin
data_req = 1'b1;
regfile_mem_we = 1'b1;
rega_used_o = 1'b1;
data_type_o = 2'b00;
// offset from immediate
alu_operator = `ALU_ADD;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_I;
// post-increment setup
if (instr_rdata_i[6:0] == `OPCODE_LOAD_POST) begin
prepost_useincr_o = 1'b0;
regfile_alu_waddr_sel_o = 1'b0;
regfile_alu_we = 1'b1;
end
// sign/zero extension
data_sign_extension_o = ~instr_rdata_i[14];
// load size
unique case (instr_rdata_i[13:12])
2'b00: data_type_o = 2'b10; // LB
2'b01: data_type_o = 2'b01; // LH
2'b10: data_type_o = 2'b00; // LW
default: data_type_o = 2'b00; // illegal or reg-reg
endcase
// reg-reg load (different encoding)
if (instr_rdata_i[14:12] == 3'b111) begin
// offset from RS2
regb_used_o = 1'b1;
alu_op_b_mux_sel_o = `OP_B_REGB_OR_FWD;
// sign/zero extension
data_sign_extension_o = ~instr_rdata_i[30];
// load size
unique case (instr_rdata_i[31:25])
7'b0000_000,
7'b0100_000: data_type_o = 2'b10; // LB, LBU
7'b0001_000,
7'b0101_000: data_type_o = 2'b01; // LH, LHU
7'b0010_000: data_type_o = 2'b00; // LW
default: begin
data_type_o = 2'b00;
// illegal instruction
data_req = 1'b0;
regfile_mem_we = 1'b0;
regfile_alu_we = 1'b0;
illegal_insn_o = 1'b1;
end
endcase
end
if (instr_rdata_i[14:12] == 3'b011 || instr_rdata_i[14:12] == 3'b110)
begin
// LD, LWU -> RV64 only
data_req = 1'b0;
regfile_mem_we = 1'b0;
regfile_alu_we = 1'b0;
illegal_insn_o = 1'b1;
end
end
//////////////////////////
// _ _ _ _ //
// / \ | | | | | | //
// / _ \ | | | | | | //
// / ___ \| |__| |_| | //
// /_/ \_\_____\___/ //
// //
//////////////////////////
`OPCODE_LUI: begin // Load Upper Immediate
alu_op_a_mux_sel_o = `OP_A_ZERO;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_U;
alu_operator = `ALU_ADD;
regfile_alu_we = 1'b1;
end
`OPCODE_AUIPC: begin // Add Upper Immediate to PC
alu_op_a_mux_sel_o = `OP_A_CURRPC;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_U;
alu_operator = `ALU_ADD;
regfile_alu_we = 1'b1;
end
`OPCODE_OPIMM: begin // Reigster-Immediate ALU Operations
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_I;
regfile_alu_we = 1'b1;
rega_used_o = 1'b1;
unique case (instr_rdata_i[14:12])
3'b000: alu_operator = `ALU_ADD; // Add Immediate
3'b010: alu_operator = `ALU_SLTS; // Set to one if Lower Than Immediate
3'b011: alu_operator = `ALU_SLTU; // Set to one if Lower Than Immediate Unsigned
3'b100: alu_operator = `ALU_XOR; // Exclusive Or with Immediate
3'b110: alu_operator = `ALU_OR; // Or with Immediate
3'b111: alu_operator = `ALU_AND; // And with Immediate
3'b001: begin
alu_operator = `ALU_SLL; // Shift Left Logical by Immediate
if (instr_rdata_i[31:25] != 7'b0)
illegal_insn_o = 1'b1;
end
3'b101: begin
if (instr_rdata_i[31:25] == 7'b0)
alu_operator = `ALU_SRL; // Shift Right Logical by Immediate
else if (instr_rdata_i[31:25] == 7'b010_0000)
alu_operator = `ALU_SRA; // Shift Right Arithmetically by Immediate
else
illegal_insn_o = 1'b1;
end
default: illegal_insn_o = 1'b1;
endcase
end
`OPCODE_OP: begin // Register-Register ALU operation
regfile_alu_we = 1'b1;
rega_used_o = 1'b1;
regb_used_o = 1'b1;
if (instr_rdata_i[28])
regb_used_o = 1'b0;
unique case ({instr_rdata_i[31:25], instr_rdata_i[14:12]})
// RV32I ALU operations
{7'b000_0000, 3'b000}: alu_operator = `ALU_ADD; // Add
{7'b010_0000, 3'b000}: alu_operator = `ALU_SUB; // Sub
{7'b000_0000, 3'b010}: alu_operator = `ALU_SLTS; // Set Lower Than
{7'b000_0000, 3'b011}: alu_operator = `ALU_SLTU; // Set Lower Than Unsigned
{7'b000_0000, 3'b100}: alu_operator = `ALU_XOR; // Xor
{7'b000_0000, 3'b110}: alu_operator = `ALU_OR; // Or
{7'b000_0000, 3'b111}: alu_operator = `ALU_AND; // And
{7'b000_0000, 3'b001}: alu_operator = `ALU_SLL; // Shift Left Logical
{7'b000_0000, 3'b101}: alu_operator = `ALU_SRL; // Shift Right Logical
{7'b010_0000, 3'b101}: alu_operator = `ALU_SRA; // Shift Right Arithmetic
// supported RV32M instructions
{7'b000_0001, 3'b000}: mult_en = 1'b1; // Multiplication
{7'b000_0001, 3'b001}: begin // MAC
regc_used_o = 1'b1;
regc_mux_o = `REGC_RD;
mult_en = 1'b1;
mult_mac_en = 1'b1;
end
// PULP specific instructions
{7'b000_0010, 3'b000}: alu_operator = `ALU_AVG; // Average
{7'b000_0010, 3'b001}: alu_operator = `ALU_AVGU; // Average Unsigned
{7'b000_0010, 3'b010}: alu_operator = `ALU_SLETS; // Set Lower Equal Than
{7'b000_0010, 3'b011}: alu_operator = `ALU_SLETU; // Set Lower Equal Than Unsigned
{7'b000_0010, 3'b100}: alu_operator = `ALU_MIN; // Min
{7'b000_0010, 3'b101}: alu_operator = `ALU_MINU; // Min Unsigned
{7'b000_0010, 3'b110}: alu_operator = `ALU_MAX; // Max
{7'b000_0010, 3'b111}: alu_operator = `ALU_MAXU; // Max Unsigned
{7'b000_0100, 3'b101}: alu_operator = `ALU_ROR; // Rotate Right
// PULP specific instructions using only one source register
{7'b000_1000, 3'b000}: alu_operator = `ALU_FF1; // Find First 1
{7'b000_1000, 3'b001}: alu_operator = `ALU_FL1; // Find Last 1
{7'b000_1000, 3'b010}: alu_operator = `ALU_CLB; // Count Leading Bits
{7'b000_1000, 3'b011}: alu_operator = `ALU_CNT; // Count set bits (popcount)
{7'b000_1000, 3'b100}: alu_operator = `ALU_EXTHS; // Sign-extend Half-word
{7'b000_1000, 3'b101}: alu_operator = `ALU_EXTHZ; // Zero-extend Half-word
{7'b000_1000, 3'b110}: alu_operator = `ALU_EXTBS; // Sign-extend Byte
{7'b000_1000, 3'b111}: alu_operator = `ALU_EXTBZ; // Zero-extend Byte
{7'b000_1010, 3'b000}: alu_operator = `ALU_ABS; // Absolute
default: begin
regfile_alu_we = 1'b0;
illegal_insn_o = 1'b1;
end
endcase
end
`OPCODE_PULP_OP: begin // PULP specific ALU instructions with three source operands
regfile_alu_we = 1'b1;
rega_used_o = 1'b1;
regb_used_o = 1'b1;
case (instr_rdata_i[13:12])
2'b00: begin // multiply with subword selection
vector_mode_o = 1'b1;
mult_sel_subword_o = {2{instr_rdata_i[30]}};
mult_signed_mode_o = {2{instr_rdata_i[31]}};
mult_en = 1'b1;
end
2'b01: begin // MAC with subword selection
regc_used_o = 1'b1;
regc_mux_o = `REGC_RD;
vector_mode_o = 1'b1;
mult_sel_subword_o = {2{instr_rdata_i[30]}};
mult_signed_mode_o = {2{instr_rdata_i[31]}};
mult_en = 1'b1;
mult_mac_en = 1'b1;
end
default: begin
regfile_alu_we = 1'b0;
illegal_insn_o = 1'b1;
end
endcase
end
////////////////////////////////////////////////
// ____ ____ _____ ____ ___ _ _ //
// / ___|| _ \| ____/ ___|_ _| / \ | | //
// \___ \| |_) | _|| | | | / _ \ | | //
// ___) | __/| |__| |___ | | / ___ \| |___ //
// |____/|_| |_____\____|___/_/ \_\_____| //
// //
////////////////////////////////////////////////
`OPCODE_SYSTEM: begin
if (instr_rdata_i[14:12] == 3'b000)
begin
// non CSR related SYSTEM instructions
unique case (instr_rdata_i[31:0])
32'h00_00_00_73: // ECALL
begin
// environment (system) call
ecall_insn_o = 1'b1;
end
32'h00_10_00_73: // ebreak
begin
// debugger trap
trap_insn = 1'b1;
end
32'h10_00_00_73: // eret
begin
eret_insn = 1'b1;
end
32'h10_20_00_73: // wfi
begin
// flush pipeline
pipe_flush = 1'b1;
end
default:
begin
illegal_insn_o = 1'b1;
end
endcase
end
else
begin
// instruction to read/modify CSR
csr_access_o = 1'b1;
regfile_alu_we = 1'b1;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_I; // CSR address is encoded in I imm
if (instr_rdata_i[14] == 1'b1) begin
// rs1 field is used as immediate
alu_op_a_mux_sel_o = `OP_A_ZIMM;
end else begin
rega_used_o = 1'b1;
alu_op_a_mux_sel_o = `OP_A_REGA_OR_FWD;
end
unique case (instr_rdata_i[13:12])
2'b01: csr_op = `CSR_OP_WRITE;
2'b10: csr_op = `CSR_OP_SET;
2'b11: csr_op = `CSR_OP_CLEAR;
default: illegal_insn_o = 1'b1;
endcase
end
end
///////////////////////////////////////////////
// _ ___ ___ ___ ___ ____ //
// | | | \ \ / / | / _ \ / _ \| _ \ //
// | |_| |\ \ /\ / /| | | | | | | | | |_) | //
// | _ | \ V V / | |__| |_| | |_| | __/ //
// |_| |_| \_/\_/ |_____\___/ \___/|_| //
// //
///////////////////////////////////////////////
`OPCODE_HWLOOP: begin
hwloop_target_mux_sel_o = 1'b0;
unique case (instr_rdata_i[14:12])
3'b000: begin
// lp.starti: set start address to PC + I-type immediate
hwloop_we[0] = 1'b1;
hwloop_start_mux_sel_o = 1'b0;
end
3'b001: begin
// lp.endi: set end address to PC + I-type immediate
hwloop_we[1] = 1'b1;
end
3'b010: begin
// lp.count: initialize counter from rs1
hwloop_we[2] = 1'b1;
hwloop_cnt_mux_sel_o = 1'b1;
rega_used_o = 1'b1;
end
3'b011: begin
// lp.counti: initialize counter from I-type immediate
hwloop_we[2] = 1'b1;
hwloop_cnt_mux_sel_o = 1'b0;
end
3'b100: begin
// lp.setup: initialize counter from rs1, set start address to
// next instruction and end address to PC + I-type immediate
hwloop_we = 3'b111;
hwloop_start_mux_sel_o = 1'b1;
hwloop_cnt_mux_sel_o = 1'b1;
rega_used_o = 1'b1;
end
3'b101: begin
// lp.setupi: initialize counter from immediate, set start address to
// next instruction and end address to PC + I-type immediate
hwloop_we = 3'b111;
hwloop_target_mux_sel_o = 1'b1;
hwloop_start_mux_sel_o = 1'b1;
hwloop_cnt_mux_sel_o = 1'b0;
end
default: begin
illegal_insn_o = 1'b1;
end
endcase
end
default: begin
illegal_insn_o = 1'b1;
end
endcase
// make sure invalid compressed instruction causes an exception
if (illegal_c_insn_i) begin
illegal_insn_o = 1'b1;
end
// misaligned access was detected by the LSU
// TODO: this section should eventually be moved out of the decoder
if (data_misaligned_i == 1'b1)
begin
// only part of the pipeline is unstalled, make sure that the
// correct operands are sent to the AGU
alu_op_a_mux_sel_o = `OP_A_REGA_OR_FWD;
alu_op_b_mux_sel_o = `OP_B_IMM;
immediate_mux_sel_o = `IMM_PCINCR;
// if prepost increments are used, we do not write back the
// second address since the first calculated address was
// the correct one
regfile_alu_we = 1'b0;
// if post increments are used, we must make sure that for
// the second memory access we do use the adder
prepost_useincr_o = 1'b1;
end
end
// deassert we signals (in case of stalls)
assign regfile_mem_we_o = (deassert_we_i) ? 1'b0 : regfile_mem_we;
assign regfile_alu_we_o = (deassert_we_i) ? 1'b0 : regfile_alu_we;
assign data_req_o = (deassert_we_i) ? 1'b0 : data_req;
assign alu_operator_o = (deassert_we_i) ? `ALU_NOP : alu_operator;
assign mult_en_o = (deassert_we_i) ? 1'b0 : mult_en;
assign mult_mac_en_o = (deassert_we_i) ? 1'b0 : mult_mac_en;
assign hwloop_we_o = (deassert_we_i) ? 3'b0 : hwloop_we;
assign csr_op_o = (deassert_we_i) ? `CSR_OP_NONE : csr_op;
assign jump_in_id_o = (deassert_we_i) ? `BRANCH_NONE : jump_in_id;
assign trap_insn_o = (deassert_we_i) ? 1'b0 : trap_insn;
assign eret_insn_o = (deassert_we_i) ? 1'b0 : eret_insn; // TODO: do not deassert?
assign pipe_flush_o = (deassert_we_i) ? 1'b0 : pipe_flush; // TODO: do not deassert?
assign jump_in_dec_o = jump_in_id;
endmodule // controller